514 research outputs found

    Cloned mouse cells with natural killer function and cloned suppressor T cells express ultrastructural and biochemical features not shared by cloned inducer T cells.

    Get PDF
    We have examined the morphology, cytochemistry, and biochemistry of mouse leukocyte subsets by analyzing cloned leukocyte populations specialized to perform different immunologic functions. Cloned cells expressing high-affinity plasma membrane receptors for IgE and mediating natural killer (NK) lysis and cloned antigen-specific suppressor T cells contained prominent osmiophilic cytoplasmic granules similar by ultrastructure to those of mouse basophils. Both clones also incorporated 35SO4 into granule-associated sulfated glycosaminoglycans, expressed a characteristic ultrastructural pattern of nonspecific esterase activity, incorporated exogenous [3H]5-hydroxytryptamine, and contained cytoplasmic deposits of particulate glycogen. By contrast, cloned inducer T cells lacked cytoplasmic granules and glycogen, incorporated neither 35SO4 nor [3H]5-hydroxytryptamine, and differed from the other clones in pattern of nonspecific esterase activity. These findings establish that certain cloned cells with NK activity and cloned suppressor T cells express morphologic and biochemical characteristics heretofore associated with basophilic granulocytes. However, these clones differ in surface glycoprotein expression and immunologic function, and the full extent of the similarities and differences among these populations and basophils remains to be determined

    Kinetics of the helix-coil transition

    Full text link
    Based on the Zimm-Bragg model we study cooperative helix-coil transition driven by a finite-speed change of temperature. There is an asymmetry between the coil-to-helix and helix-to-coil transition: the latter is displayed already for finite speeds, and takes shorter time than the former. This hysteresis effect has been observed experimentally, and it is explained here via quantifying system's stability in the vicinity of the critical temperature. A finite-speed cooling induces a non-equilibrium helical phase with the correlation length larger than in equilibrium. In this phase the characteristic length of the coiled domain and the non-equilibrium specific heat can display an anomalous response to temperature changes. Several pertinent experimental results on the kinetics helical biopolymers are discussed in detail.Comment: 6 pages, 8 figure

    Indication of the ferromagnetic instability in a dilute two-dimensional electron system

    Full text link
    The magnetic field B_c, in which the electrons become fully spin-polarized, is found to be proportional to the deviation of the electron density from the zero-field metal-insulator transition in a two-dimensional electron system in silicon. The tendency of B_c to vanish at a finite electron density suggests a ferromagnetic instability in this strongly correlated electron system.Comment: 4 pages, postscript figures included. Revised versio

    Thermal (in)stability of type I collagen fibrils

    Full text link
    We measured Young's modulus at temperatures ranging from 20 to 100 ^{\circ}Cforacollagenfibriltakenfromratstendon.Thehydrationchangeunderheatingandthedampingdecrementweremeasuredaswell.AtphysiologicaltemperaturesC for a collagen fibril taken from rat's tendon. The hydration change under heating and the damping decrement were measured as well. At physiological temperatures 25-45^{\circ}CYoungsmodulusdecreases,whichcanbeinterpretedasinstabilityofcollagen.FortemperaturesbetweenC Young's modulus decreases, which can be interpreted as instability of collagen. For temperatures between 45-80^{\circ}CYoungsmodulusfirststabilizesandthenincreaseswithdecreasingthetemperature.ThehydratedwatercontentandthedampingdecrementhavestrongmaximaintheintervalC Young's modulus first stabilizes and then increases with decreasing the temperature. The hydrated water content and the damping decrement have strong maxima in the interval 70-80^{\circ}Cindicatingoncomplexintermolecularstructuralchangesinthefibril.AlltheseeffectsdisappearafterheatdenaturatingthesampleatC indicating on complex inter-molecular structural changes in the fibril. All these effects disappear after heat-denaturating the sample at 120^\circ$C. Our main result is a five-stage mechanism by which the instability of a single collagen at physiological temperatures is compensated by the interaction between collagen molecules within the fibril.Comment: 4 pages, 4 figure

    Disorder-Induced Broadening of the Density of States for 2D Electrons with Strong Spin-Orbit Coupling

    Full text link
    We study theoretically the disorder-induced smearing of the density of states in a two-dimensional electron system taking into account a spin-orbit term in the Hamiltonian of a free electron. We show that the characteristic energy scale for the smearing increases with increasing the spin-orbit coupling. We also demonstrate that in the limit of a strong spin-orbit coupling the diagrams with self-intersections give a parametrically small contribution to the self-energy. As a result, the coherent potential approximation becomes asymptotically exact in this limit. The tail of the density of states has the energy scale which is much smaller than the magnitude of the smearing. We find the shape of the tail using the instanton approach.Comment: 12 pages, REVTeX, 4 figure

    Ground state properties of the 2D disordered Hubbard model

    Full text link
    We study the ground state of the two-dimensional (2D) disordered Hubbard model by means of the projector quantum Monte Carlo (PQMC) method. This approach allows us to investigate the ground state properties of this model for lattice sizes up to 10×1010 \times 10, at quarter filling, for a broad range of interaction and disorder strengths. Our results show that the ground state of this system of spin-1/2 fermions remains localised in the presence of the short-ranged Hubbard interaction.Comment: 7 pages, 9 figure

    Metal-insulator transition at B=0 in a dilute two dimensional GaAs-AlGaAs hole gas

    Full text link
    We report the observation of a metal insulator transition at B=0 in a high mobility two dimensional hole gas in a GaAs-AlGaAs heterostructure. A clear critical point separates the insulating phase from the metallic phase, demonstrating the existence of a well defined minimum metallic conductivity sigma(min)=2e/h. The sigma(T) data either side of the transition can be `scaled' on to one curve with a single parameter (To). The application of a parallel magnetic field increases sigma(min) and broadens the transition. We argue that strong electron-electron interactions (rs = 10) destroy phase coherence, removing quantum intereference corrections to the conductivity.Comment: 4 pages RevTex + 4 figures. Submitted to PRL. Originally posted 22 September 1997. Revised 12 October 1997 - minor changes to referencing, figure cations and figure

    ASASSN-15lh: A Highly Super-Luminous Supernova

    Get PDF
    We report the discovery of ASASSN-15lh (SN 2015L), which we interpret as the most luminous supernova yet found. At redshift z = 0.2326, ASASSN-15lh reached an absolute magnitude of M_{u,AB} = -23.5+/-0.1 and bolometric luminosity L_bol = (2.2+/-0.2)x 10^45 ergs s^-1, which is more than twice as luminous as any previously known supernova. It has several major features characteristic of the hydrogen-poor super-luminous supernovae (SLSNe-I), whose energy sources and progenitors are currently poorly understood. In contrast to most previously known SLSNe-I that reside in star-forming dwarf galaxies, ASASSN-15lh appears to be hosted by a luminous galaxy (M_K ~ -25.5) with little star formation. In the 4 months since first detection, ASASSN-15lh radiated (1.1+/- 0.2)x10^52 ergs, challenging the magnetar model for its engine.Comment: Published in the January 15, 2016 Issue of Science Magazin
    corecore