302 research outputs found
A survey of oscillating flow in Stirling engine heat exchangers
Similarity parameters for characterizing the effect of flow oscillation on wall shear stress, viscous dissipation, pressure drop and heat transfer rates are proposed. They are based on physical agruments and are derived by normalizing the governing equations. The literature on oscillating duct flows, regenerator and porous media flows is surveyed. The operating characteristics of the heat exchanger of eleven Stirling engines are discribed in terms of the similarity parameters. Previous experimental and analytical results are discussed in terms of these parameters and used to estimate the nature of the oscillating flow under engine operating conditions. The operating points for many of the modern Stirling engines are in or near the laminar to turbulent transition region. In several engines, working fluid does not pass entirely through heat exchangers during a cycle. Questions that need to be addressed by further research are identified
Heat Transfer and Fluid Dynamics Measurements in the Expansion Space of a Stirling Cycle Engine
The heater (or acceptor) of a Stirling engine, where most of the thermal energy is accepted into the engine by heat transfer, is the hottest part of the engine. Almost as hot is the adjacent expansion space of the engine. In the expansion space, the flow is oscillatory, impinging on a two-dimensional concavely-curved surface. Knowing the heat transfer on the inside surface of the engine head is critical to the engine design for efficiency and reliability. However, the flow in this region is not well understood and support is required to develop the CFD codes needed to design modern Stirling engines of high efficiency and power output. The present project is to experimentally investigate the flow and heat transfer in the heater head region. Flow fields and heat transfer coefficients are measured to characterize the oscillatory flow as well as to supply experimental validation for the CFD Stirling engine design codes. Presented also is a discussion of how these results might be used for heater head and acceptor region design calculations
Measurements in Transitional Boundary Layers Under High Free-Stream Turbulence and Strong Acceleration Conditions
Measurements from transitional, heated boundary layers along a concave-curved test wall are presented and discussed. A boundary layer subject to low free-stream turbulence intensity (FSTI), which contains stationary streamwise (Gortler) vortices, is documented. The low FSTI measurements are followed by measurements in boundary layers subject to high (initially 8%) free-stream turbulence intensity and moderate to strong streamwise acceleration. Conditions were chosen to simulate those present on the downstream half of the pressure side of a gas turbine airfoil. Mean flow characteristics as well as turbulence statistics, including the turbulent shear stress, turbulent heat flux, and turbulent Prandtl number, are documented. A technique called "octant analysis" is introduced and applied to several cases from the literature as well as to data from the present study. Spectral analysis was applied to describe the effects of turbulence scales of different sizes during transition. To the authors'knowledge, this is the first detailed documentation of boundary layer transition under such high free-stream turbulence conditions
Increasing phytoremediation efficiency and reliability using novel omics approaches
Phytoremediation is a cost-effective green alternative to traditional soil remediation technologies, but has experienced varied success in practice. The recent omics revolution has led to leaps in our understanding of soil microbial communities and plant metabolism, and some of the conditions that promote predictable activity in contaminated soils and heterogeneous environments. Combinations of omics tools and new bioinformatics approaches will allow us to understand integrated activity patterns between plants and microbes, and determine how this metaorganism can be modified to maximize growth, appropriate assembly of microbial communities, and, ultimately, phytoremediation activity. Here we provide an overview of how new omics-mediated discoveries can potentially be translated into an effective and reliable environmental technology
CO Line Emission and Absorption from the HL Tauri Disk-Where Is All the Dust?
We present high-resolution infrared spectra of HL Tau, a heavily embedded young star. The spectra exhibit broad emission lines of 12CO gas-phase molecules, as well as narrow absorption lines of 12CO, 13CO, and C18O. The broad emission lines of vibrationally excited 12CO are dominated by the hot (T ~ 1500 K) inner disk. The narrow absorption lines of CO are found to originate from the circumstellar gas at a temperature of ~100 K. The 12CO column density for this cooler material [(7.5 ± 0.2) × 1018 cm-2] indicates a large column of absorbing gas along the line of sight. In dense interstellar clouds, this column density of CO gas is associated with AV ~ 52 mag. However, the extinction toward this source (AV ~ 23) suggests that there is less dust along the line of sight than inferred from the CO absorption data. We discuss three possibilities for the apparent paucity of dust along the line of sight through the flared disk: (1) the dust extinction has been underestimated because of differences in circumstellar grain properties, such as grain agglomeration; (2) the effect of scattering has been underestimated and the actual extinction is much higher; or (3) the line of sight through the disk is probing a gas-rich, dust-depleted region, possibly due to the stratification of gas and dust in a preplanetary disk. Through the analysis of hot rovibrational 12CO line emission, we place strong constraints on grain growth and thermal infrared dust opacity, and separately constrain the enhancement of carbon-bearing species in the neighboring molecular envelope. The physical stratification of gas and dust in the HL Tau disk remains a viable explanation for the anomalous gas-to-dust ratio seen in this system. The measured radial velocity dispersion in the outer disk is consistent with the thermal line widths of the absorption lines, leaving only a small turbulent component to provide gas-dust mixing
Multi-stage Learning for Radar Pulse Activity Segmentation
Radio signal recognition is a crucial function in electronic warfare. Precise
identification and localisation of radar pulse activities are required by
electronic warfare systems to produce effective countermeasures. Despite the
importance of these tasks, deep learning-based radar pulse activity recognition
methods have remained largely underexplored. While deep learning for radar
modulation recognition has been explored previously, classification tasks are
generally limited to short and non-interleaved IQ signals, limiting their
applicability to military applications. To address this gap, we introduce an
end-to-end multi-stage learning approach to detect and localise pulse
activities of interleaved radar signals across an extended time horizon. We
propose a simple, yet highly effective multi-stage architecture for
incrementally predicting fine-grained segmentation masks that localise radar
pulse activities across multiple channels. We demonstrate the performance of
our approach against several reference models on a novel radar dataset, while
also providing a first-of-its-kind benchmark for radar pulse activity
segmentation.Comment: 5 pages, 8 figure
Multi-task Learning for Radar Signal Characterisation
Radio signal recognition is a crucial task in both civilian and military
applications, as accurate and timely identification of unknown signals is an
essential part of spectrum management and electronic warfare. The majority of
research in this field has focused on applying deep learning for modulation
classification, leaving the task of signal characterisation as an understudied
area. This paper addresses this gap by presenting an approach for tackling
radar signal classification and characterisation as a multi-task learning (MTL)
problem. We propose the IQ Signal Transformer (IQST) among several reference
architectures that allow for simultaneous optimisation of multiple regression
and classification tasks. We demonstrate the performance of our proposed MTL
model on a synthetic radar dataset, while also providing a first-of-its-kind
benchmark for radar signal characterisation.Comment: 5 pages, 3 figure
Interstellar H3+ Line Absorption toward LkHα 101
We present a detection of three lines of the H+3 ion in the near-infrared spectrum of the Herbig Be star LkHalpha 101. H+3 is the principal initiator of gas-phase chemistry in interstellar clouds and can be used to constrain the ionization rate or the path length through interstellar material along the line of sight. Essentially all of the observed H+3 column of (2.2+/-0.3)×1014 cm-2 toward LkHalpha 101 originates in the same dense, dark cloud; less than 1 mag of the ~11 total magnitudes of visual extinction is attributable to diffuse material. Constraints on the density [1×104cm-
Post-Outburst Observations of V1647 Ori: Detection of a Brief Warm, Molecular Outflow
We present new observations of the fundamental ro-vibrational CO spectrum of
V1647 Ori, the young star whose recent outburst illuminated McNeil's Nebula.
Previous spectra, acquired during outburst in 2004 February and July, had shown
the CO emission lines to be broad and centrally peaked-similar to the CO
spectrum of a typical classical T Tauri star. In this paper, we present CO
spectra acquired shortly after the luminosity of the source returned to its
pre-outburst level (2006 February) and roughly one year later (2006 December
and 2007 February). The spectrum taken in 2006 February revealed blue-shifted
CO absorption lines superimposed on the previously observed CO emission lines.
The projected velocity, column density, and temperature of this outflowing gas
was 30 km/s, 3^{+2}_{-1}E18 cm^{-2$, and 700^{+300}_{-100} K, respectively. The
absorption lines were not observed in the 2006 December and 2007 February data,
and so their strengths must have decreased in the interim by a factor of 9 or
more. We discuss three mechanisms that could give rise to this unusual outflow.Comment: 14 pages, 2 figures, accepted for publication in ApJ
Analytical Investigation of a Reflux Boiler
A thermal model of a single Ultralight Fabric Reflux Tube (UFRT) was constructed and tested against data for an array of such tubes tested in the NASA-JSC facility. Modifications to the single fin model were necessary to accommodate the change in radiation shape factors due to adjacent tubes. There was good agreement between the test data and data generated for the same cases by the thermal model. The thermal model was also used to generate single and linear array data for the lunar environment (the primary difference between the test and lunar data was due to lunar gravity). The model was also used to optimize the linear spacing of the reflux tubes in an array. The optimal spacing of the tubes was recommended to be about 5 tube diameters based on maximizing the heat transfer per unit mass. The model also showed that the thermal conductivity of the Nextel fabric was the major limitation to the heat transfer. This led to a suggestion that the feasibility of jacketing the Nextel fiber bundles with copper strands be investigated. This jacketing arrangement was estimated to be able to double the thermal conductivity of the fabric at a volume concentration of about 12-14%. Doubling the thermal conductivity of the fabric would double the amount of heat transferred at the same steam saturation temperature
- …