1,130 research outputs found
Event anisotropy in 4.2A GeV/c C+C collisions
The directed and elliptic flow of protons and negative pions in 4.2A GeV/c
C+C collisions is studied using the Fourier analysis of azimuthal
distributions. It is found that the protons exhibit pronounced directed flow,
while the flow of pions is either non existent or too weak to be detected
experimentally. Also, it is found that in the entire rapidity interval the
elliptic flow is very small if not zero. These results are confirmed by the
Quark-Gluon-String Model (QGSM) and the relativistic transport model (ART 1.0),
except that these models predict very weak antiflow of pions. The more detailed
comparison with the QGSM suggests that the decay of resonances and rescattering
of secondaries dominantly determine the proton and negative pion flow at this
energy.Comment: 7 pages, 3 figures, TeX file changed from double to single-spacin
Search for heavy resonances decaying to a W or Z boson and a Higgs boson in the qq¯(′)bb¯ final state in pp collisions at √s = 13 TeV with the ATLAS detector
A search for heavy resonances decaying to a W or Z boson and a Higgs boson in the qq¯(′)bb¯ final state is described. The search uses 36.1 fb−1 of proton–proton collision data at s=13 TeV collected by the ATLAS detector at the CERN Large Hadron Collider in 2015 and 2016. The data are in agreement with the Standard Model expectations, with the largest excess found at a resonance mass of 3.0 TeV with a local (global) significance of 3.3 (2.1) σ. The results are presented in terms of constraints on a simplified model with a heavy vector triplet. Upper limits are set on the production cross-section times branching ratio for resonances decaying to a W (Z) boson and a Higgs boson, itself decaying to bb¯, in the mass range between 1.1 and 3.8 TeV at 95% confidence level; the limits range between 83 and 1.6 fb (77 and 1.1 fb) at 95% confidence level
Measurements of top quark spin observables in tt events using dilepton final states in √s=8 TeV pp collisions with the ATLAS detector
Measurements of top quark spin observables in tt events are presented based on 20.2 fb(-1) of root s = 8TeV proton-proton collisions recorded with the ATLAS detector at the LHC. The analysis is performed in the dilepton final state, characterised by the presence of two isolated leptons ( electrons or muons). There are 15 observables, each sensitive to a different coefficient of the spin density matrix of tt production, which are measured independently. Ten of these observables are measured for the first time. All of them are corrected for detector resolution and acceptance effects back to the parton and stable-particle levels. The measured values of the observables at parton level are compared to Standard Model predictions at next-to-leading order in QCD. The corrected distributions at stable-particle level are presented and the means of the distributions are compared to Monte Carlo predictions. No significant deviation from the Standard Model is observed for any observable
Probing lepton flavour violation via neutrinoless τ⟶3μ decays with the ATLAS detector
This article presents the sensitivity of theATLAS experiment to the lepton-flavour-violating decays of τ → 3μ. A method utilising the production of τ leptons via W → τν decays is used. This method is applied to the sample of 20.3 fb−1 of pp collision data at a centre-of-mass energy of 8 TeV collected by the ATLAS experiment at the LHC in 2012. No event is observed passing the selection criteria,and the observed (expected) upper limit on the τ lepton branching fraction into three muons,Br(τ → 3μ),is 3.76 × 10−7 (3.94 × 10−7) at 90 % confidence level
Differential Transverse Flow in Central C-Ne and C-Cu Collisions at 3.7 GeV/nucleon
Differential transverse flow of protons and pions in central C-Ne and C-Cu
collisions at a beam energy of 3.7 GeV/nucleon was measured as a function of
transverse momentum at the SKM-200-GIBS setup of JINR. In agreement with
predictions of a transversely moving thermal model, the strength of proton
differential transverse flow is found to first increase gradually and then
saturate with the increasing transverse momentum in both systems. While pions
are preferentially emitted in the same direction of the proton transverse flow
in the reaction of C-Ne, they exhibit an anti-flow to the opposote direction of
the proton transverse flow in the reaction of C-Cu due to stronger shadowing
effects of the heavier target in thr whole range of transverse momentum.Comment: 15 pages, 5 figure
Measurement of detector-corrected observables sensitive to the anomalous production of events with jets and large missing transverse momentum in pp collisions at √s=13 TeV using the ATLAS detector
Observables sensitive to the anomalous production of events containing hadronic jets and missing momentum in the plane transverse to the proton beams at the Large Hadron Collider are presented. The observables are defined as a ratio of cross sections, for events containing jets and large missing transverse momentum to events containing jets and a pair of charged leptons from the decay of a Z/ γ∗boson. This definition minimises experimental and theoretical systematic uncertainties in the measurements. This ratio is measured differentially with respect to a number of kinematic properties of the hadronic system in two phase-space regions; one inclusive single-jet region and one region sensitive to vector-boson-fusion topologies. The data are found to be in agreement with the Standard Model predictions and used to constrain a variety of theoretical models for dark-matter production, including simplified models, effective field theory models, and invisible decays of the Higgs boson. The measurements use 3.2 fb- 1of proton–proton collision data recorded by the ATLAS experiment at a centre-of-mass energy of 13 TeV and are fully corrected for detector effects, meaning that the data can be used to constrain new-physics models beyond those shown in this paper
Measurement of the production cross section of prompt j/psi mesons in association with a W (+/-) boson in pp collisions root s=7 TeV with the ATLAS detector
The process pp - GT W (+/-) J/psi provides a powerful probe of the production mechanism of charmonium in hadronic collisions, and is also sensitive to multiple parton interactions in the colliding protons. Using the 2011 ATLAS dataset of 4.5 fb(-1) of root s= 7 TeV pp collisions at the LHC, the first observation is made of the production of W (+/-) + prompt J/psi events in hadronic collisions, using W (+/-) - GT mu nu(mu) and J/psi - GT mu(+)mu(-) center dot A yield of W (+/-) + prompt J/psi events is observed, with a statistical significance of 5.1 sigma. The production rate as a ratio to the inclusive W (+/-) boson production rate is measured, and the double parton scattering contribution to the cross section is estimated
Centrality and rapidity dependence of inclusive jet production in root(NN)-N-S=5.02 TeV proton-lead collisions with the ATLAS detector
Measurements of the centrality and rapidity dependence of inclusive jet production in root(NN)-N-S = 5.02 TeV proton-lead (p + Pb) collisions and the jet cross-section in root s = 2.76 TeV proton-proton collisions are presented. These quantities are measured in datasets corresponding to an integrated luminosity of 27.8 nb(-1) and 4.0 pb(-1), respectively, recorded with the ATLAS detector at the Large Hadron Collider in 2013. The p + Pb collision centrality was characterised using the total transverse energy measured in the pseudorapidity interval -4.9 LT eta LT -3.2 in the direction of the lead beam. Results are presented for the double-differential per-collision yields as a function of jet rapidity and transverse momentum (p(T)) for minimum-bias and centrality-selected p + Pb collisions, and are compared to the jet rate from the geometric expectation. The total jet yield in minimum-bias events is slightly enhanced above the expectation in a p(T)-dependent manner but is consistent with the expectation within uncertainties. The ratios of jet spectra from different centrality selections show a strong modification of jet production at all p(T) at forward rapidities and for large pT at mid-rapidity, which manifests as a suppression of the jet yield in central events and an enhancement in peripheral events. These effects imply that the factorisation between hard and soft processes is violated at an unexpected level in proton-nucleus collisions. Furthermore, the modifications at forward rapidities are found to be a function of the total jet energy only, implying that the violations may have a simple dependence on the hard parton-parton kinematics. (C) 2015 CERN for the benefit of the ATLAS Collaboration. Published by Elsevier B.V
Search for W - GT tb - GT qqbb decays in pp collisions at root s=8 TeV with the ATLAS detector
A search for a massive W gauge boson decaying to a top quark and a bottom quark is performed with the ATLAS detector in pp collisions at the LHC. The datasetwas taken at a centre-of-mass energy of root s = 8 TeV and corresponds to 20.3 fb(-1) of integrated luminosity. This analysis is done in the hadronic decay mode of the top quark, where novel jet substructure techniques are used to identify jets from high-momentum top quarks. This allows for a search for high-mass W bosons in the range 1.5-3.0 TeV. b-tagging is used to identify jets originating from b-quarks. The data are consistent with Standard Model background-only expectations, and upper limits at 95% confidence level are set on the W - GT tb cross section times branching ratio ranging from 0.16 pb to 0.33 pb for left-handed W bosons, and ranging from 0.10 pb to 0.21 pb for W bosons with purely righthanded couplings. Upper limits at 95% confidence level are set on the W-boson coupling to tb as a function of the W mass using an effective field theory approach, which is independent of details of particular models predicting a W boson
Measurements of the Nuclear Modification Factor for Jets in Pb plus Pb Collisions at root SNN=2.76 TeV with the ATLAS Detector
Measurements of inclusive jet production are performed in pp and Pb + Pb collisions at root SNN = 2.76 TeV with the ATLAS detector at the LHC, corresponding to integrated luminosities of 4.0 and 0.14 nb(-1), respectively. The jets are identified with the anti-k(t) algorithm with R = 0.4, and the spectra are measured over the kinematic range of jet transverse momentum 32 LT pT LT 500 GeV and absolute rapidity |y| LT 2.1 and as a function of collision centrality. The nuclear modification factor R-AA is evaluated, and jets are found to be suppressed by approximately a factor of 2 in central collisions compared to pp collisions. The RAA shows a slight increase with pT and no significant variation with rapidity
- …