78,439 research outputs found

    Low redshift constraints on energy-momentum-powered gravity models

    Full text link
    There has been recent interest in the cosmological consequences of energy-momentum-powered gravity models, in which the matter side of Einstein's equations is modified by the addition of a term proportional to some power, nn, of the energy-momentum tensor, in addition to the canonical linear term. In this work we treat these models as phenomenological extensions of the standard Λ\LambdaCDM, containing both matter and a cosmological constant. We also quantitatively constrain the additional model parameters using low redshift background cosmology data that are specifically from Type Ia supernovas and Hubble parameter measurements. We start by studying specific cases of these models with fixed values of n,n, which lead to an analytic expression for the Friedmann equation; we discuss both their current constraints and how the models may be further constrained by future observations of Type Ia supernovas for WFIRST complemented by measurements of the redshift drift by the ELT. We then consider and constrain a more extended parameter space, allowing nn to be a free parameter and considering scenarios with and without a cosmological constant. These models do not solve the cosmological constant problem per se. Nonetheless these models can phenomenologically lead to a recent accelerating universe without a cosmological constant at the cost of having a preferred matter density of around ΩM0.4\Omega_M\sim0.4 instead of the usual ΩM0.3\Omega_M\sim0.3. Finally we also briefly constrain scenarios without a cosmological constant, where the single component has a constant equation of state which needs not be that of matter; we provide an illustrative comparison of this model with a more standard dynamical dark energy model with a constant equation of state.Comment: 13+2 pages, 12+1 figures; A&A (in press

    Some new class of Chaplygin Wormholes

    Full text link
    Some new class of Chaplygin wormholes are investigated in the framework of a Chaplygin gas with equation of state p=Aρ p = - \frac{A}{\rho}, A>0A>0. Since empty spacetime (p=ρ=0 p = \rho = 0 ) does not follow Chaplygin gas, so the interior Chaplygin wormhole solutions will never asymptotically flat. For this reason, we have to match our interior wormhole solution with an exterior vacuum solution i.e. Schwarzschild solution at some junction interface, say r=a r = a . We also discuss the total amount of matter characterized by Chaplygin gas that supplies fuel to construct a wormhole.Comment: 14 pages, 12 figures, Accepted for publication in Mod.Phys.Lett.

    Predicted defect induced vortex core switching in thin magnetic nanodisks

    Full text link
    We investigate the influence of artificial defects (small holes) inserted into magnetic nanodisks on the vortex core dynamics. One and two holes (antidots) are considered. In general, the core falls into the hole but, in particular, we would like to remark an interesting phenomenon not yet observed, which is the vortex core switching induced by the vortex-hole interactions. It occurs for the case with only one hole and for very special conditions involving the hole size and position as well as the disk size. Any small deformation in the disk geometry such as the presence of a second antidot changes completely the vortex dynamics and the vortex core eventually falls into one of the defects. After trapped, the vortex center still oscillates with a very high frequency and small amplitude around the defect center.Comment: 11pages, Revtex format, 17 figure
    corecore