15 research outputs found

    The authors reply

    No full text

    Stat3 Programs Th17-Specific Regulatory T Cells to Control GN

    No full text
    A pathogenic role for Th17 cells in inflammatory renal disease is well established. The mechanisms underlying their counter-regulation are, however, largely unknown. Recently, Th17 lineage-specific regulatory T cells (Treg17) that depend on activation of the transcription factor Stat3 were identified. We studied the function of Treg17 in the nephrotoxic nephritis (NTN) model of crescentic GN. The absence of Treg17 cells in Foxp3(Cre)×Stat3(fl/fl) mice resulted in the aggravation of NTN and skewing of renal and systemic immune responses toward Th17. Detailed analysis of Stat3-deficient Tregs revealed that the survival, activation, proliferation, and suppressive function of these cells remained intact. However, Tregs from Foxp3(Cre)×Stat3(fl/fl) mice lacked surface expression of the chemokine receptor CCR6, which resulted in impaired renal trafficking. Furthermore, aggravation of NTN was reversible in the absence of Th17 responses, as shown in CD4(Cre)×Stat3(fl/fl) mice lacking both Treg17 and Th17 cells, suggesting that Th17 cells are indeed the major target of Treg17 cells. Notably, immunohistochemistry revealed CCR6-bearing Treg17 cells in kidney biopsy specimens of patients with GN. CCR6 expression on human Treg17 cells also appears dependent on STAT3, as shown by analysis of Tregs from patients with dominant-negative STAT3 mutations. Our data indicate the presence and involvement of Stat3/STAT3-dependent Treg17 cells that specifically target Th17 cells in murine and human crescentic GN, and suggest the kidney-specific action of these Treg17 cells is regulated by CCR6-directed migration into areas of Th17 inflammation

    Bevacizumab-associated glomerular microangiopathy

    No full text
    Bevacizumab is a humanized monoclonal IgG1 antibody, which neutralizes vascular endothelial growth factor and is used for treating multiple cancer types. As a known and frequent adverse event, this therapy can lead to renal damage including proteinuria and nephrotic syndrome. In a retrospective approach, we analyzed 17 renal biopsies from patients receiving bevacizumab treatment. We observed a distinctive histopathological pseudothrombotic pattern different from the previously reported thrombotic microangiopathy. Since this pattern includes some features similar to acute and chronic thrombotic microangiopathy, focal segmental glomerulosclerosis and cryoglobulinemic membranoproliferative glomerulonephritis, biopsies with these diagnoses were included for comparison. Clinical, laboratory, light microscopic, immunohistochemical (including a proximity ligation assay), proteomic and electron microscopic features were assessed. Nephrotic syndrome was present in 15 of the 17 bevacizumab-treated patients. All 17 displayed a patchy pattern of variably PAS-positive hyaline pseudothrombi occluding markedly dilated glomerular capillaries in their biopsies. Mass spectrometry-based proteome analysis revealed a special protein pattern demonstrating some features of thrombotic microangiopathy and some of cryoglobulinemic glomerulonephritis, including a strong accumulation of IgG in the pseudothrombi. Proximity ligation assay did not show interaction of IgG with C1q, arguing for accumulation without classic pathway complement activation. In contrast to thrombi in thrombotic microangiopathy cases, the hyaline pseudothrombi did not contain clusters of CD61-positive platelets. Electron microscopy of bevacizumab cases did not show fibrin polymers or extensive loss of podocyte foot processes. Even though cases of bevacizumab-associated microangiopathy share some features with thrombotic microangiopathy, its overall histopathological pattern is quite different from acute or chronic thrombotic microangiopathy cases. We conclude that bevacizumab therapy can lead to a unique hyaline occlusive glomerular microangiopathy, likely arising from endothelial leakage followed by subendothelial accumulation of serum proteins. It can be diagnosed by light microscopy and is an important differential diagnosis in cancer patients with nephrotic syndrome

    MicroRNA-155 Drives T(H)17 Immune Response and Tissue Injury in Experimental Crescentic GN

    No full text
    CD4(+) T cells play a pivotal role in the pathogenesis of autoimmune disease, including human and experimental crescentic GN. Micro-RNAs (miRs) have emerged as important regulators of immune cell development, but the impact of miRs on the regulation of the CD4(+) T cell immune response remains to be fully clarified. Here, we report that miR-155 expression is upregulated in the kidneys of patients with ANCA-associated crescentic GN and a murine model of crescentic GN (nephrotoxic nephritis). To elucidate the potential role of miR-155 in T cell-mediated inflammation, nephritis was induced in miR-155(-/-) and wild-type mice. The systemic and renal nephritogenic T(H)17 immune response decreased markedly in nephritic miR-155(-/-) mice. Consistent with this finding, miR-155-deficient mice developed less severe nephritis, with reduced histologic and functional injury. Adoptive transfer of miR-155(-/-) and wild-type CD4(+) T cells into nephritic recombination activating gene 1-deficient (Rag-1(-/-)) mice showed the T cell-intrinsic importance of miR-155 for the stability of pathogenic T(H)17 immunity. These findings indicate that miR-155 drives the T(H)17 immune response and tissue injury in experimental crescentic GN and show that miR-155 is a potential therapeutic target in T(H)17-mediated diseases
    corecore