19 research outputs found

    Dynamic response analysis of rutting resistance performance of high modulus asphalt concrete pavement

    Get PDF
    In order to systematically study the rutting resistance performance of High-Modulus Asphalt Concrete (HMAC) pavements, a finite element method model of HMAC pavement was established using ABAQUS software. Based on the viscoelasticity theory of asphalt, the stress and deformation distribution characteristics of HMAC pavement were studied and compared to conventional asphalt pavement under moving loads. Then, the pavement temperature field model was established to study the temperature variation and the thermal stress in HMAC pavement. Finally, under the condition of continuous temperature variation, the creep behavior and permanent deformation of HMAC pavement were investigated. The results showed that under the action of moving loads, the strain and displacement generated in HMAC pavement were lower than those in conventional asphalt pavement. The upper surface layer was most obviously affected by outside air temperature, resulting in maximum thermal stress. Lastly, under the condition of continuous temperature change, HMAC pavement could greatly reduce the deformation of asphalt material in each surface layer compared to conventional asphalt pavement

    Probability Distributions of Asphalt Pavement Responses and Performance under Random Moving Loads and Pavement Temperature

    No full text
    Asphalt pavements are damaged by traffic load repetitions. Conventionally, the allowed number of load repetitions until pavement failure is calculated based on empirical transfer functions from deterministic pavement mechanical responses to performance. However, the mechanical responses and damage to the pavement are uncertain under a random realistic traffic load and pavement temperature. Therefore, the non-deterministic problem—that is, the probability distributions of asphalt pavement responses and performance under random moving loads and pavement temperatures—was investigated in this study. Random factors include the load pressure, vehicle wandering, speed, and temperature inside the asphalt layer. A combination of the response surface and first-order reliability methodologies was recommended to calculate the probability of mechanical responses at any point within the pavement, for reasons of computational efficiency. The accuracy of this method was verified by a Monte-Carlo simulation. Then, the effects of the mean values and standard deviations of the random factors on the probability distributions of the mechanical responses were discussed. Finally, probability distributions of pavement performance (i.e., probability density distributions of cumulative damage for fatigue failure and rutting after repeated random loads) were calculated using transfer functions and the probability distributions of the mechanical responses; thereby, the failure probability of the pavement after a given number of load repetitions was obtained. The results show that the previous deterministic analysis could not fully reflect the random characteristics of pavement mechanical responses under realistic random moving loads, and the mean values and standard deviations of the random factors have significant effects on the probability distributions of mechanical responses and performance. The failure probability of the pavement after a given number of load repetitions can be used as a guide to reliability-based pavement design. This study on the probability distributions of asphalt pavement responses and performance exhibits the potential to understand pavement behavior and could be beneficial as a complement during reliability-based pavement design

    Research on Mesoscopic Response of Asphalt Pavement Structure under Vibration Load

    No full text
    The various damages of asphalt pavement are closely related to the mesomechanical gradual behavior of asphalt materials, and it is very important to study the mesoscopic response under vibration loading in order to reveal the failure mechanism of asphalt pavement. The semisinusoidal vertical load is applied to the subgrade-surface discrete element model in this paper, and we use the model to analyze the evolution behavior of microcrack generation and expansion processes, stress distribution and stress transfer, and displacement field in various structural layers of asphalt pavement. The results show that the number of cracks increases rapidly on both sides of the vibration load, the rut is generated due to repeated load on the wheel, the asphalt mixture has bulging phenomenon on both sides of the rut and formed macroscopic cracks at the ridge, the microcracks extend mainly along the weak joints of the edges of the coarse aggregate and the asphalt cement, the number of microcracks increases slowly at the initial stage of the vibration load, the microcracks increase sharply until macroscopic cracks appear with the vibration load increases, the direction of compressive stress extends parallel to the microcrack, and the direction of tensile stress extends perpendicular to the microcracks inside the asphalt pavement. The results show that the discrete element method can not only obtain the stress and displacement of each structural layer, but also reveal the microcrack gradual behavior between particle flows

    Stability Analysis of Fractional-Order Mathieu Equation with Forced Excitation

    No full text
    The advantage of fractional-order derivative has attracted extensive attention in the field of dynamics. In this paper, we investigated the stability of the fractional-order Mathieu equation under forced excitation, which is based on a model of the pantograph–catenary system. First, we obtained the approximate analytical expressions and periodic solutions of the stability boundaries by the multi-scale method and the perturbation method, and the correctness of these results were verified through numerical analysis by Matlab. In addition, by analyzing the stability of the k’T-periodic solutions in the system, we verified the existence of the unstable k’T-resonance lines through numerical simulation, and visually investigated the effect of the system parameters. The results show that forced excitation with a finite period does not change the position of the stability boundaries, but it can affect the expressions of the periodic solutions. Moreover, by analyzing the properties of the resonant lines, we found that when the points with k’T-periodic solutions were perturbed by the same frequency of forced excitation, these points became unstable due to resonance. Finally, we found that both the damping coefficient and the fractional-order parameters in the system have important influences on the stability boundaries and the resonance lines

    Research on Spiral Tunnel Exit Speed Prediction Model Based on Driver Characteristics

    No full text
    The “white hole effect” alters the driving environment during a tunnel’s exit phase, making it more difficult and uncertain for drivers to access information and control their behavior, thereby endangering traffic safety. Consequently, the driving risk at the exit of a long spiral tunnel served as the subject of this study, and the Jinjiazhuang spiral tunnel served as the object of the natural vehicle driving experiment. Following the theory of a non-linear autoregressive dynamic neural network, a vehicle speed prediction model based on driver characteristics was developed for the exit phase of the tunnel, taking driver expectations and behavioral changes into account. It also classifies the driver’s behavior during the tunnel’s exit phase to assess the risk posed by the driver’s behavior during the tunnel’s exit phase and determine a dynamic and safe comfort speed. The study’s results indicate that the driver’s behavioral load changed significantly as the vehicle approached the tunnel exit. At the exit of the spiral tunnel, the vehicle’s actual speed was 71 km/h, which is below the speed limit of 80 km/h. This demonstrates that the expected change in the driver’s behavior in the tunnel exit phase was substantial. Therefore, setting the emotional safety and comfort speed so that the driver maintains a smooth comfort level in the tunnel exit phase can reduce the tunnel exit driving risk. The results of this study provide a benchmark for tunnel traffic safety and lay the groundwork for further development of vehicle risk warning settings for the tunnel’s exit phase

    Optimization Design of Asphalt Mixture Composite Reinforced with Calcium Sulfate Anhydrous Whisker and Polyester Fiber Based on Response Surface Methodology

    No full text
    In order to improve the properties of calcium sulfate anhydrous whisker (ACSW) and polyester fiber composite reinforced asphalt mixture (ACPRA) to meet the service requirements of pavement materials in low-temperature environments, the central composite circumscribed design (CCC), a kind of response surface methodology, was chosen to optimize the design parameters. Three independence variables, asphalt aggregate ratio, ACSW content, and polyester fiber content were adopted to evaluate the design parameters. Four responsive variables, air voids, Marshall stability, splitting tensile strength, and failure tensile strain, were chosen to study the volumetric and mechanical characteristics, and the low-temperature behavior of ACPRA by the Marshall test and indirect tensile test at −10 °C. The results showed that, taking low-temperature behavior optimization as the objective, the CCC method was practicable to optimize design of ACPRA, and the optimization design parameters were asphalt aggregate ratio of 4.0%, ACSW content of 10.8%, and polyester fiber content of 0.4%. Furthermore, the impact of three independence variables interactions on four response variables was also discussed, and it was identified that the interaction between asphalt aggregate ratio and ACSW content, and between asphalt aggregate ratio and polyester fiber content, has greater bearing on the splitting tensile strength and failure tensile strain of APCRA. Meanwhile, ACSW and polyester fiber enhancing the low-temperature behavior of APCRA was primarily connected with their contents

    Laboratory Evaluation of the Relationship of Asphalt Binder and Asphalt Mastic via a Modified MSCR Test

    No full text
    Asphalt mastic, which consists of an asphalt binder and a mineral filler, provides critical adhesion and viscoelasticity to an asphalt mixture. The rheological response of the asphalt mastic is mainly derived from its asphalt binder. In this study, a simple laboratory test method is proposed to estimate the relationship of asphalt binder and its mastic. Two modified binders (3.5% and 4.0% styrene–butadiene–styrene (SBS) of asphalt binder by mass) were blended with a limestone filler at six different mineral filler contents to produce mastic samples. A modified multiple stress creep-recovery (MSCR) test was conducted on both the asphalt binder and its mastic with the same testing protocols, and the stress conditions and rheological response of asphalt binder in the mastic with linear or nonlinear viscoelasticity were both investigated. The results show that the stress of the asphalt binder in its mastic decreased with increasing filler contents. However, for the linear-viscoelasticity mastic, the decrease rate of the stress began to slow down when the filler content had reached 100% or 120%. For the rheological properties of the asphalt binder in the mastic, the %R of the asphalt binder was improved by adding filler, especially for the nonlinear-viscoelasticity mastic. The asphalt binder of the linear-viscoelasticity asphalt mastic also showed a linear viscoelastic response and a good recovery property. The performance of the asphalt mastic and rheological properties of its asphalt binder were highly related to its filler content

    Research on Spiral Tunnel Exit Speed Prediction Model Based on Driver Characteristics

    No full text
    The “white hole effect” alters the driving environment during a tunnel’s exit phase, making it more difficult and uncertain for drivers to access information and control their behavior, thereby endangering traffic safety. Consequently, the driving risk at the exit of a long spiral tunnel served as the subject of this study, and the Jinjiazhuang spiral tunnel served as the object of the natural vehicle driving experiment. Following the theory of a non-linear autoregressive dynamic neural network, a vehicle speed prediction model based on driver characteristics was developed for the exit phase of the tunnel, taking driver expectations and behavioral changes into account. It also classifies the driver’s behavior during the tunnel’s exit phase to assess the risk posed by the driver’s behavior during the tunnel’s exit phase and determine a dynamic and safe comfort speed. The study’s results indicate that the driver’s behavioral load changed significantly as the vehicle approached the tunnel exit. At the exit of the spiral tunnel, the vehicle’s actual speed was 71 km/h, which is below the speed limit of 80 km/h. This demonstrates that the expected change in the driver’s behavior in the tunnel exit phase was substantial. Therefore, setting the emotional safety and comfort speed so that the driver maintains a smooth comfort level in the tunnel exit phase can reduce the tunnel exit driving risk. The results of this study provide a benchmark for tunnel traffic safety and lay the groundwork for further development of vehicle risk warning settings for the tunnel’s exit phase

    Laboratory Evaluation of the Relationship of Asphalt Binder and Asphalt Mastic via a Modified MSCR Test

    No full text
    Asphalt mastic, which consists of an asphalt binder and a mineral filler, provides critical adhesion and viscoelasticity to an asphalt mixture. The rheological response of the asphalt mastic is mainly derived from its asphalt binder. In this study, a simple laboratory test method is proposed to estimate the relationship of asphalt binder and its mastic. Two modified binders (3.5% and 4.0% styrene–butadiene–styrene (SBS) of asphalt binder by mass) were blended with a limestone filler at six different mineral filler contents to produce mastic samples. A modified multiple stress creep-recovery (MSCR) test was conducted on both the asphalt binder and its mastic with the same testing protocols, and the stress conditions and rheological response of asphalt binder in the mastic with linear or nonlinear viscoelasticity were both investigated. The results show that the stress of the asphalt binder in its mastic decreased with increasing filler contents. However, for the linear-viscoelasticity mastic, the decrease rate of the stress began to slow down when the filler content had reached 100% or 120%. For the rheological properties of the asphalt binder in the mastic, the %R of the asphalt binder was improved by adding filler, especially for the nonlinear-viscoelasticity mastic. The asphalt binder of the linear-viscoelasticity asphalt mastic also showed a linear viscoelastic response and a good recovery property. The performance of the asphalt mastic and rheological properties of its asphalt binder were highly related to its filler content

    Laboratory Evaluation on Performance of Recycled Asphalt Binder and Mixtures under Short-Term Aging Conditions

    No full text
    As asphalt materials are exposed to very high temperatures before construction, such as in the transportation stage or the storage stage, short-term aging of asphalt material occurs. At these stages, diffusion or blending between RAP (reclaimed asphalt pavement) binder and virgin binder may occur. In this study, recycled blends, incorporating SBS modified binder, RAP binder and recycling agents, were prepared with incremental RAP binders of up to 40%, and RTFO (Rolling Thin-Film Oven) tests in condition times of 300 and 600 min were conducted on the recycled blends. Characterization tests included ΔTcr, complex modulus master curve, a G-R (Glover-Rowe) parameter on recycled blends, and dynamic modulus, fracture test, and midpoint bending fatigue tests on mixtures. The ΔTcr and the G-R parameter results showed that aging time significantly affected the cracking resistance of the recycled blends. Compared to the virgin SBS modified asphalt binder, the recycled blends tended to be more sensitive to the aging process. The complex modulus master curve of binders and the dynamic modulus and phase angle results of mixtures show that the binder/mixtures appear to be stiffer with an increase in the RAP binder dosage. Generally, the low temperature cracking and fatigue cracking resistance of virgin mixtures is better than that of RAP mixtures, especially for high RAP binder dosage mixtures, and longer aging times have a negative impact on the cracking resistance of mixture. However, when we extend RTFO aging time, the higher dosage of RAP mixtures show better cracking resistance than the lower dosage of RAP mixtures. The reason for this could be that the chemical process may occur between the virgin SBS modified asphalt binder and the RAP binder at high temperatures
    corecore