3,625 research outputs found

    SelfieBoost: A Boosting Algorithm for Deep Learning

    Full text link
    We describe and analyze a new boosting algorithm for deep learning called SelfieBoost. Unlike other boosting algorithms, like AdaBoost, which construct ensembles of classifiers, SelfieBoost boosts the accuracy of a single network. We prove a log(1/ϵ)\log(1/\epsilon) convergence rate for SelfieBoost under some "SGD success" assumption which seems to hold in practice

    Exact finite approximations of average-cost countable Markov Decision Processes

    Full text link
    For a countable-state Markov decision process we introduce an embedding which produces a finite-state Markov decision process. The finite-state embedded process has the same optimal cost, and moreover, it has the same dynamics as the original process when restricting to the approximating set. The embedded process can be used as an approximation which, being finite, is more convenient for computation and implementation.Comment: Submitted to Automatic
    corecore