4,458 research outputs found

    Thermal entanglement in a two-spin-qutrit system under a nonuniform external magnetic field

    Full text link
    The thermal entanglement in a two-spin-qutrit system with two spins coupled by exchange interaction under a magnetic field in an arbitrary direction is investigated. Negativity, the measurement of entanglement, is calculated. We find that for any temperature the evolvement of negativity is symmetric with respect to magnetic field. The behavior of negativity is presented for four different cases. The results show that for different temperature, different magnetic field give maximum entanglement. Both the parallel and antiparallel magnetic field cases are investigated qualitatively (not quantitatively) in detail, we find that the entanglement may be enhanced under an antiparallel magnetic field.Comment: 2 eps figure

    Thermal entanglement in a two-qubit Heisenberg XXZ spin chain under an inhomogeneous magnetic field

    Full text link
    The thermal entanglement in a two-qubit Heisenberg \emph{XXZ} spin chain is investigated under an inhomogeneous magnetic field \emph{b}. We show that the ground-state entanglement is independent of the interaction of \emph{z}-component JzJ_{z}. The thermal entanglement at the fixed temperature can be enhanced when JzJ_{z} increases. We strictly show that for any temperature \emph{T} and JzJ_{z} the entanglement is symmetric with respect to zero inhomogeneous magnetic field, and the critical inhomogeneous magnetic field bcb_{c} is independent of JzJ_{z}. The critical magnetic field BcB_{c} increases with the increasing b|b| but the maximum entanglement value that the system can arrive becomes smaller.Comment: 5 EPS figure

    Probing crossover from analogous weak antilocalization to localization by an Aharonov-Bohm interferometer on topological insulator surface

    Full text link
    We propose a scanning tunneling microscopy Aharonov-Bohm (AB) interferometer on the surface of a topological insulator (TI) to probe the crossover from analogous weak antilocalization (WAL) to weak localization (WL) phenomenon via the AB oscillations in spin-resolved local density of states (LDOS). Based on our analytical and numerical results, we show that with increasing the energy gap of TI surface states, the Φ0/2\Phi_{0}/2=hc/2ehc/2e periodic AB oscillations in spin-resolved LDOS gradually transit into the Φ0\Phi_{0} periodic oscillations.Comment: 4.2 APL pages, 2 figure
    corecore