2,851 research outputs found
Chemical evolution in the early phases of massive star formation II: Deuteration
The chemical evolution in high-mass star-forming regions is still poorly
constrained. Studying the evolution of deuterated molecules allows to
differentiate between subsequent stages of high-mass star formation regions due
to the strong temperature dependence of deuterium isotopic fractionation. We
observed a sample of 59 sources including 19 infrared dark clouds, 20 high-mass
protostellar objects, 11 hot molecular cores and 9 ultra-compact HII regions in
the (3-2) transitions of the four deuterated molecules, DCN, DNC, DCO+ and N2D+
as well as their non-deuterated counterpart. The overall detection fraction of
DCN, DNC and DCO+ is high and exceeds 50% for most of the stages. N2D+ was only
detected in a few infrared dark clouds and high-mass protostellar objects. It
can be related to problems in the bandpass at the frequency of the transition
and to low abundances in the more evolved, warmer stages. We find median D/H
ratios of ~0.02 for DCN, ~0.005 for DNC, ~0.0025 for DCO+ and ~0.02 for N2D+.
While the D/H ratios of DNC, DCO+ and N2D+ decrease with time, DCN/HCN peaks at
the hot molecular core stage. We only found weak correlations of the D/H ratios
for N2D+ with the luminosity of the central source and the FWHM of the line,
and no correlation with the H2 column density. In combination with a previously
observed set of 14 other molecules (Paper I) we fitted the calculated column
densities with an elaborate 1D physico-chemical model with time-dependent
D-chemistry including ortho- and para-H2 states. Good overall fits to the
observed data have been obtained the model. It is one of the first times that
observations and modeling have been combined to derive chemically based
best-fit models for the evolution of high-mass star formation including
deuteration.Comment: 26 pages, 16 figures, accepted at A&
Motif Berperilaku Kepala Desa Pada Penyelenggaraan Pemerintahan Desa di Kabupaten Minahasa Selatan
The behavior of the village chief is expected to build the image quality public services, but in reality the implementation of public services have not been able to walk properly due to the unavailability of the service personnel are professional, dedicated, accountable and responsive and loyal to his duties as civil servants and public servants. By using a qualitative approach was found that social status (achievement, prestige / status position and power / power, and needs (income and appreciation) are two underlying motives in the village head behaves In Governance in South Minahasa Regency Village. Loyalty and professional as media which can bridge the social status and the need to make quality services. Keywords: Motive behavior, social status, Supplies, Service
Recommended from our members
Future energy, fuel cells, and solid-oxide fuel-cell technology
According to the US Department of Energy’s Energy Infomation Administration (EIA) (International Energy Outlook 2017), world energy consumption will increase 28% between 2015 and 2040, rising from 575 quadrillion Btu (∼606 quadrillion kJ) in 2015 to 736 quadrillion Btu (∼776 quadrillion kJ) in 2040. EIA predicts increases in consumption for all energy sources (excluding coal, which is estimated to remain flat)—fossil (petroleum and other liquids, natural gas), renewables (solar, wind, hydropower), and nuclear. Although renewables are the world’s fastest growing form of energy, fossil fuels are expected to continue to supply more than three-quarters of the energy used worldwide. Among the various fossil fuels, natural gas is the fastest growing, with a projected increase of 43% from 2015 to 2040. As the use of fossil fuels increases, the EIA projects world energy-related carbon dioxide emission to grow from ∼34 billion metric tons in 2015 to ∼40 billion metric tonnes in 2040 (an average 0.6% increase per year)
Investigation on Aluminum-Based Amorphous Metallic Glass as New Anode Material in Lithium Ion Batteries
Aluminum based amorphous metallic glass powders were produced and tested as the anode materials for the lithium ion rechargeable batteries. Ground Al₈₀Ni₁₀La₁₀ was found to have a low first cycle capacity of about 100 Ah/Kg. The considerable amount of intermetallic formed in the amorphous glass makes the aluminum inactive towards the lithium. The ball milled Al₈₈Ni₉Y₃ powders contain pure aluminum crystalline particles in the amorphous matrix and have first cycle capacity of about 500 Ah/Kg. Nevertheless, polarization was caused by oxidation introduced by the ball-milling process. The electrochemical performances of these amorphous metallic glasses need to be further investigated. Their full lithium insertion capacities cannot be confirmed until the compositions and particle size inside the metallic glass anodes, the conformation of the electrodes and the mechanical milling processes are optimized.Singapore-MIT Alliance (SMA
VLA Observations of the Infrared Dark Cloud G19.30+0.07
We present Very Large Array observations of ammonia (NH3) (1,1), (2,2), and
CCS (2_1-1_0) emission toward the Infrared Dark Cloud (IRDC) G19.30+0.07 at
~22GHz. The NH3 emission closely follows the 8 micron extinction. The NH3 (1,1)
and (2,2) lines provide diagnostics of the temperature and density structure
within the IRDC, with typical rotation temperatures of ~10 to 20K and NH3
column densities of ~10^15 cm^-2. The estimated total mass of G19.30+0.07 is
~1130 Msun. The cloud comprises four compact NH3 clumps of mass ~30 to 160
Msun. Two coincide with 24 micron emission, indicating heating by protostars,
and show evidence of outflow in the NH3 emission. We report a water maser
associated with a third clump; the fourth clump is apparently starless. A
non-detection of 8.4GHz emission suggests that the IRDC contains no bright HII
regions, and places a limit on the spectral type of an embedded ZAMS star to
early-B or later. From the NH3 emission we find G19.30+0.07 is composed of
three distinct velocity components, or "subclouds." One velocity component
contains the two 24 micron sources and the starless clump, another contains the
clump with the water maser, while the third velocity component is diffuse, with
no significant high-density peaks. The spatial distribution of NH3 and CCS
emission from G19.30+0.07 is highly anti-correlated, with the NH3 predominantly
in the high-density clumps, and the CCS tracing lower-density envelopes around
those clumps. This spatial distribution is consistent with theories of
evolution for chemically young low-mass cores, in which CCS has not yet been
processed to other species and/or depleted in high-density regions.Comment: 29 pages, 9 figures, accepted for publication by ApJ. Please contact
the authors for higher resolution versions of the figure
Chemical evolution in the early phases of massive star formation. I
Understanding the chemical evolution of young (high-mass) star-forming
regions is a central topic in star formation research. Chemistry is employed as
a unique tool 1) to investigate the underlying physical processes and 2) to
characterize the evolution of the chemical composition. We observed a sample of
59 high-mass star-forming regions at different evolutionary stages varying from
the early starless phase of infrared dark clouds to high-mass protostellar
objects to hot molecular cores and, finally, ultra-compact HII regions at 1mm
and 3mm with the IRAM 30m telescope. We determined their large-scale chemical
abundances and found that the chemical composition evolves along with the
evolutionary stages. On average, the molecular abundances increase with time.
We modeled the chemical evolution, using a 1D physical model where density and
temperature vary from stage to stage coupled with an advanced gas-grain
chemical model and derived the best-fit chi^2 values of all relevant
parameters. A satisfying overall agreement between observed and modeled column
densities for most of the molecules was obtained. With the best-fit model we
also derived a chemical age for each stage, which gives the timescales for the
transformation between two consecutive stages. The best-fit chemical ages are
~10,000 years for the IRDC stage, ~60,000 years for the HMPO stage, ~40,000
years for the HMC stage, and ~10,000 years for the UCHII stage. The total
chemical timescale for the entire evolutionary sequence of the high-mass star
formation process is on the order of 10^5 years, which is consistent with
theoretical estimates. Furthermore, based on the approach of a multiple-line
survey of unresolved data, we were able to constrain an intuitive and
reasonable physical and chemical model. The results of this study can be used
as chemical templates for the different evolutionary stages in high-mass star
formation.Comment: 31 pages, 11 figures, 21 tables, accepted by A&A; typos adde
- …