38 research outputs found

    Universal scaling for the spin-electricity conversion on surface states of topological insulators

    Full text link
    We have investigated spin-electricity conversion on surface states of bulk-insulating topological insulator (TI) materials using a spin pumping technique. The sample structure is Ni-Fe|Cu|TI trilayers, in which magnetic proximity effects on the TI surfaces are negligibly small owing to the inserted Cu layer. Voltage signals produced by the spin-electricity conversion are clearly observed, and enhanced with decreasing temperature in line with the dominated surface transport at lower temperatures. The efficiency of the spin-electricity conversion is greater for TI samples with higher resistivity of bulk states and longer mean free path of surface states, consistent with the surface spin-electricity conversion

    Effect of Inlet Geometry on Fan Performance and Flow Field in a Half-Ducted Propeller Fan

    Get PDF
    In order to clarify the effect of rotor inlet geometry of half-ducted propeller fan on performance and velocity fields at rotor outlet, the experimental investigation was carried out using a hotwire anemometer. Three types of inlet geometry were tested. The first type is the one that the rotor blade tip is fully covered by a casing. The second is that the front one-third part of blade tip is opened and the rest is covered. The third is that the front two-thirds are opened and the rest is covered. Fan test and internal flow measurement at rotor outlet were conducted about three types of inlet geometry. At the internal flow measurement, a single slant hotwire probe was used and a periodical multisampling technique was adopted to obtain the three-dimensional velocity distributions. From the results of fan test, the pressure-rise characteristic drops at high flowrate region and the stall point shifts to high flowrate region, when the opened area of blade tip increases. From the results of velocity distributions at rotor outlet, the region with high axial velocity moves to radial inwards, the circumferential velocity near blade tip becomes high, and the flow field turns to radial outward, when the opened area increases

    Interfacial Waves in a Horizomtal Channel (Behavior of a Solitary Wave on Flowing Liquid)

    Get PDF
    Experiments and numerical calculations were carried out on the dynamic behavior of the solitary wave of a flowing liquid. Data on the wave propagation velocity, the wave profile, and the liquid velocity profile were presented. Results of the numerical calculations agreed with the experimental results in respect of the above-mentioned qualities which characterize the solitary wave. Thus, the applicability of this numerical calculation method was verified. Based on the experimental results and the numerical calculations, simple correlation equations, which express the relationships between the solitary waves of the stationary liquid and of the stratified liquid flow were deduced. The applicability of Benjamin’s theory on the solitary wave of a flowing liquid was also verified

    DOCK2 is involved in the host genetics and biology of severe COVID-19

    Get PDF
    「コロナ制圧タスクフォース」COVID-19疾患感受性遺伝子DOCK2の重症化機序を解明 --アジア最大のバイオレポジトリーでCOVID-19の治療標的を発見--. 京都大学プレスリリース. 2022-08-10.Identifying the host genetic factors underlying severe COVID-19 is an emerging challenge. Here we conducted a genome-wide association study (GWAS) involving 2, 393 cases of COVID-19 in a cohort of Japanese individuals collected during the initial waves of the pandemic, with 3, 289 unaffected controls. We identified a variant on chromosome 5 at 5q35 (rs60200309-A), close to the dedicator of cytokinesis 2 gene (DOCK2), which was associated with severe COVID-19 in patients less than 65 years of age. This risk allele was prevalent in East Asian individuals but rare in Europeans, highlighting the value of genome-wide association studies in non-European populations. RNA-sequencing analysis of 473 bulk peripheral blood samples identified decreased expression of DOCK2 associated with the risk allele in these younger patients. DOCK2 expression was suppressed in patients with severe cases of COVID-19. Single-cell RNA-sequencing analysis (n = 61 individuals) identified cell-type-specific downregulation of DOCK2 and a COVID-19-specific decreasing effect of the risk allele on DOCK2 expression in non-classical monocytes. Immunohistochemistry of lung specimens from patients with severe COVID-19 pneumonia showed suppressed DOCK2 expression. Moreover, inhibition of DOCK2 function with CPYPP increased the severity of pneumonia in a Syrian hamster model of SARS-CoV-2 infection, characterized by weight loss, lung oedema, enhanced viral loads, impaired macrophage recruitment and dysregulated type I interferon responses. We conclude that DOCK2 has an important role in the host immune response to SARS-CoV-2 infection and the development of severe COVID-19, and could be further explored as a potential biomarker and/or therapeutic target

    The whole blood transcriptional regulation landscape in 465 COVID-19 infected samples from Japan COVID-19 Task Force

    Get PDF
    「コロナ制圧タスクフォース」COVID-19患者由来の血液細胞における遺伝子発現の網羅的解析 --重症度に応じた遺伝子発現の変化には、ヒトゲノム配列の個人差が影響する--. 京都大学プレスリリース. 2022-08-23.Coronavirus disease 2019 (COVID-19) is a recently-emerged infectious disease that has caused millions of deaths, where comprehensive understanding of disease mechanisms is still unestablished. In particular, studies of gene expression dynamics and regulation landscape in COVID-19 infected individuals are limited. Here, we report on a thorough analysis of whole blood RNA-seq data from 465 genotyped samples from the Japan COVID-19 Task Force, including 359 severe and 106 non-severe COVID-19 cases. We discover 1169 putative causal expression quantitative trait loci (eQTLs) including 34 possible colocalizations with biobank fine-mapping results of hematopoietic traits in a Japanese population, 1549 putative causal splice QTLs (sQTLs; e.g. two independent sQTLs at TOR1AIP1), as well as biologically interpretable trans-eQTL examples (e.g., REST and STING1), all fine-mapped at single variant resolution. We perform differential gene expression analysis to elucidate 198 genes with increased expression in severe COVID-19 cases and enriched for innate immune-related functions. Finally, we evaluate the limited but non-zero effect of COVID-19 phenotype on eQTL discovery, and highlight the presence of COVID-19 severity-interaction eQTLs (ieQTLs; e.g., CLEC4C and MYBL2). Our study provides a comprehensive catalog of whole blood regulatory variants in Japanese, as well as a reference for transcriptional landscapes in response to COVID-19 infection
    corecore