99 research outputs found

    Optical Measurements of High-Density Helicon Plasma by Using a High-Speed Camera and Monochromators * )

    Get PDF
    Electric propulsion is an established high-efficiency method in deep space explorers. However, most of the applied methods feature electrodes in direct contact with the plasma, thus its lifetime is limited by the electrodes' erosion. We developed electrodeless electric propulsion systems in order to overcome this problem, and performed optical measurements to estimate the high-density helicon plasma performance of the systems. The electron and neutral particle density profiles were measured by a high-speed camera, and the velocity of the singly-charged Ar ions was determined by a high-resolution monochromator. Additionally, a preliminary experiment of a spectroscopic method using an intensity ratio based on a collisional radiative model with a CCD monochromator was performed. The plasma parameters were in good agreement with the results obtained by an electrostatic probe, and the non-invasive optical measurements presented here can constitute an effective tool for evaluating an electric propulsion system

    Space micropropulsion systems for Cubesats and small satellites: From proximate targets to furthermost frontiers

    Get PDF
    Rapid evolution of miniaturized, automatic, robotized, function-centered devices has redefined space technology, bringing closer the realization of most ambitious interplanetary missions and intense near-Earth space exploration. Small unmanned satellites and probes are now being launched in hundreds at a time, resurrecting a dream of satellite constellations, i.e., wide, all-covering networks of small satellites capable of forming universal multifunctional, intelligent platforms for global communication, navigation, ubiquitous data mining, Earth observation, and many other functions, which was once doomed by the extraordinary cost of such systems. The ingression of novel nanostructured materials provided a solid base that enabled the advancement of these affordable systems in aspects of power, instrumentation, and communication. However, absence of efficient and reliable thrust systems with the capacity to support precise maneuvering of small satellites and CubeSats over long periods of deployment remains a real stumbling block both for the deployment of large satellite systems and for further exploration of deep space using a new generation of spacecraft. The last few years have seen tremendous global efforts to develop various miniaturized space thrusters, with great success stories. Yet, there are critical challenges that still face the space technology. These have been outlined at an inaugural International Workshop on Micropropulsion and Cubesats, MPCS-2017, a joint effort between Plasma Sources and Application Centre/Space Propulsion Centre (Singapore) and the Micropropulsion and Nanotechnology Lab, the G. Washington University (USA) devoted to miniaturized space propulsion systems, and hosted by CNR-Nanotec - P.Las.M.I. lab in Bari, Italy. This focused review aims to highlight the most promising developments reported at MPCS-2017 by leading world-reputed experts in miniaturized space propulsion systems. Recent advances in several major types of small thrusters including Hall thrusters, ion engines, helicon, and vacuum arc devices are presented, and trends and perspectives are outlined.This work was supported in part by the following funds and organizations: OSTIn-SRP/EDB through National Research Foundation and in part by MoE AcRF (Rp6/16 Xs), Singapore; National Natural Science Foundation of China (Grant Nos. 51777045 and 51477035); National Technical Basic Scientific Research of China, Grant No. JSZL2016203c006; NASA DC Space Grant Consortium; Grant-in-Aid for Scientific Research under Grant S: 21226019 and Grant B: 17H02295 through the Japan Society for the Promotion of Science, and by NIFS budget code NIFS17KLER063, and KAKENHI grant: Grant-in-Aid for Scientific Research (S), No. JP16H06370; S.S. thanks late Professor K. Toki, late Dr. K. P. Shamrai, Dr. Kuwahara, and the HEAT project members for their contribution Y.R. acknowledges the support from the US DOE under Contract No. DE-AC02-09CH11466; I.L. acknowledges the support from the School of Chemistry, Physics and Mechanical Engineering, Science and Engineering Faculty, Queensland University of Technology; special thanks to L. Xu, M. Lim, S. Huang, and the entire PSAC/SPCS for their help

    Initial Trial of Plasma Mass Separation by Crossed Electric and Magnetic Fields

    No full text
    Using segmented concentric rings to produce a radial electric field, an initial trial experiment on ion mass separation in a magnetized plasma with low collisionality has been successfully carried out. With the increase in electric field or the decrease in magnetic field, the azimuthal flow velocity in the Xe plasma saturated and then it decayed due to the unconfined condition. On the other hand, the Ar plasma, whose mass is lighter than the Xe one, did not show this behavior in this operational region. These results are consistent with a particle orbit analysis and a simple calculation of the balances of forces

    Review of Helicon High-Density Plasma: Production Mechanism and Plasma/Wave Characteristics

    No full text

    Numerical Modeling of Electrodeless Electric Thruster by Ion Cyclotron Resonance/Ponderomotive Acceleration

    No full text

    多目的用大容量・高密度ヘリコン源のプラズマ特性

    No full text

    周辺プラズマ研究の最近の進展 2.周辺プラズマ物理入門

    No full text
    corecore