117 research outputs found

    Endoscopically assisted resection of a scapular osteochondroma causing snapping scapula syndrome

    Get PDF
    BACKGROUND: Osteochondroma is the most common benign bone tumor in the scapula. This condition might lead to snapping scapula syndrome, which is characterized by painful, audible, and/or palpable abnormal scapulothoracic motion. In the present case, this syndrome was successfully treated by use of endoscopically assisted resection of the osteochondroma. CASE PRESENTATION: A 41-year-old man had a tolerable pain in his scapular region over a 10 years' period. The pain developed gradually with shoulder motion, in particular with golf swing since he was aiming a professional golf player career. On physical examination, "clunking" was noted once from 90 degrees of abduction to 180 degrees of shoulder motion. A trans-scapular roentgenogram and computed tomography images revealed an osteochondroma located at the anterior and inferior aspect of the scapula. Removal of the tumor was performed by the use of endoscopically assisted resection. One portal was made at the lateral border of the scapula to introduce a 2.7-mm-diameter, 30 degrees Hopkins telescope. The tumor was resected in a piece-by-piece manner by the use of graspers through the same portal. Immediately after the operation pain relief was obtained, and the "clunking" disappeared. CT images showed complete tumor resection. The patient could start playing golf one week after the surgery. CONCLUSION: Endoscopically assisted resection of osteochondroma of the scapula provides a feasible technique to treat snapping scapula syndrome and obtain early functional recovery with a short hospital stay and cosmetic advantage

    Arthroscopic labral repair concomitantly performed with curved periacetabular osteotomy

    Get PDF
    A 23-year-old female presented with pain in the left hip. Radiological examination showed developmental dysplasia of the hip (DDH) combined with acetabular retroversion and posterior wall deficiency. Findings in the physical examination were coincident with femoroacetabular impingement. At surgery, we performed curved periacetabular osteotomy concomitant with arthroscopic labral repair and osteochondroplasty, simultaneously addressing dysplastic acetabulum and femoroacetabular impingement. The final follow-up examination at 18 months showed satisfactory outcome with the D’Aubigne and Postel hip score of 17/18. In addition to accurate diagnosis, the arthroscopic procedure for associated intra- and peri-articular problems seems to help improve the surgical outcome of periacetabular osteotomy performed for patients with DDH. Level of evidence IV

    Multiple pelvic insufficiency fractures in rheumatoid patients with mutilating changes

    Get PDF
    Multiple insufficiency fractures occurred in two patients with mutilating rheumatoid arthritis (RA), leading to substantial disabilities. Both patients received long-term oral glucocorticoid therapy and underwent multiple lower-extremity surgeries such as total hip arthroplasty (THA) or Total knee arthroplasty (TKA). The multiple fractures were located in the pelvis and lumbosacral region. Fractures in both patients were treated conservatively. Although bony union and resumption of activities were achieved in one patient, the other patient was not able to resume ambulation. For RA patients with combined risk factors for insufficiency fractures, aggressive preventive intervention and careful clinical assessment for early detection and management are warranted

    Network Features and Pathway Analyses of a Signal Transduction Cascade

    Get PDF
    The scale-free and small-world network models reflect the functional units of networks. However, when we investigated the network properties of a signaling pathway using these models, no significant differences were found between the original undirected graphs and the graphs in which inactive proteins were eliminated from the gene expression data. We analyzed signaling networks by focusing on those pathways that best reflected cellular function. Therefore, our analysis of pathways started from the ligands and progressed to transcription factors and cytoskeletal proteins. We employed the Python module to assess the target network. This involved comparing the original and restricted signaling cascades as a directed graph using microarray gene expression profiles of late onset Alzheimer's disease. The most commonly used method of shortest-path analysis neglects to consider the influences of alternative pathways that can affect the activation of transcription factors or cytoskeletal proteins. We therefore introduced included k-shortest paths and k-cycles in our network analysis using the Python modules, which allowed us to attain a reasonable computational time and identify k-shortest paths. This technique reflected results found in vivo and identified pathways not found when shortest path or degree analysis was applied. Our module enabled us to comprehensively analyse the characteristics of biomolecular networks and also enabled analysis of the effects of diseases considering the feedback loop and feedforward loop control structures as an alternative path

    Rituximab Administration and Reactivation of HBV

    Get PDF
    Rituximab is a drug used for the treatment of B-cell non-Hodgkin's lymphoma, and its range of use has expanded to the treatment of collagen diseases such as idiopathic thrombocytopenic purpura and rheumatoid arthritis. One serious complication of rituximab use is the reactivation of dormant hepatitis B virus, and prevention of this phenomenon has become an urgent issue. This paper provides a general outline of the problem through an analysis of patient cases that we and other groups have experienced to date

    Computer-aided Surgical Planning of Anterior Cruciate Ligament Reconstruction in MR Images

    Get PDF
    AbstractAnterior cruciate ligament (ACL) injury causes knee joint instability, and effects on sports performance. Therefore, ACL reconstruction is essential to keep their high performance. It is well known that the outcome of ACL reconstruction is strongly related to the placement and orientation of the bone tunnel. Therefore, optimization of tunnel drilling technique is an important factor to obtain satisfactory surgical results. Current procedure relies on arthroscopic evaluation and there is a risk of damaging arteries and ligaments during surgery. The damages may reduce the accuracy and reproducibility of ACL reconstruction. As a postoperative evaluation method, a quadrant method has been used to evaluate the placement and orientation of the bone tunnel in X-ray radiography. This study proposes a computer-aided surgical planning system for evaluating ACL insertion site and orientation using magnetic resonance (MR) images. We first introduce MR image based the quadrant method to determine the ACL insertion site for preoperative patients. It also evaluates the 3-D spatial relationship between the planning femoral drilling hole and arteries around the femoral condyle. This system has been applied to ACL injured patients, it may increase the accuracy and reproducibility of ACL bone tunnel, and it can evaluate a risk of damaging the surrounding arteries and ligaments

    Frequency-dependent ERK phosphorylation in spinal neurons by electric stimulation of the sciatic nerve and the role in electrophysiological activity

    Get PDF
    The phosphorylation of extracellular signal-regulated kinase (pERK) in DRG and dorsal horn neurons is induced by the C-fiber electrical stimulation to the peripheral nerve. The present study was designed to investigate the expression and modulation of pERK in the rat dorsal horn neurons produced by repetitive electrical stimulation, and its involvement in the electrophysiological activity of dorsal horn neurons. Electrical stimulation of C-fiber intensity at different frequencies was applied to the sciatic nerve; the stimuli-induced pERK expression and the activity in dorsal horn neurons were studied by immunohistochemistry and extracellular recording, respectively. Electrical stimulation of C-fibers (3 mA) induced pERK expression in dorsal horn neurons in a frequency-dependent manner, indicating that the frequency of electrical stimulation is an important factor which activates the intracellular signal pathway in the spinal cord. To demonstrate the underlying mechanism of this frequency-dependent pERK expression, an NMDA receptor antagonist, MK-801, and a voltage sensitive calcium channel antagonist, nifedipine, were administrated intrathecally before the stimulation. We found that high frequency (0.5 Hz and 10 Hz) but not low frequent (0.05 Hz) stimulus-evoked pERK was partially inhibited by MK-801. Both high and low frequency stimulus-evoked pERK were inhibited by the nifedipine treatment. The extracellular single unit activities were recorded from the laminae I-II and V of the L4-5 dorsal horn, and we found that blockage of the intracellular ERK signal suppressed the wind-up responses in a dose-dependent manner. In contrast, any change in the mechanically evoked responses was not observed following the administration of ERK inhibitor. These observations indicate that ERK activation plays an important role in the induction of the wind-up responses in dorsal horn nociceptive neurons

    Superconductivity of the Sr2Ca12Cu24O41Sr_2 Ca_{12} Cu_{24} O_{41} spin ladder system: Are the superconducting pairing and the spin-gap formation of the same origin?

    Full text link
    Pressure-induced superconductivity in a spin-ladder cuprate Sr2_2Ca12_{12}Cu24_{24}O41_{41} has not been studied on a microscopic level so far although the superconductivity was already discovered in 1996. We have improved high-pressure technique with using a large high-quality crystal, and succeeded in studying the superconductivity using 63^{63}Cu nuclear magnetic resonance (NMR). We found that anomalous metallic state reflecting the spin-ladder structure is realized and the superconductivity possesses a s-wavelike character in the meaning that a finite gap exists in the quasi-particle excitation: At pressure of 3.5GPa we observed two excitation modes in the normal state from the relaxation rate T11T_1^{-1}. One gives rise to an activation-type component in T11T_1^{-1}, and the other TT-linear component linking directly with the superconductivity. This gapless mode likely arises from free motion of holon-spinon bound states appearing by hole doping, and the pairing of them likely causes the superconductivity.Comment: to be published in Phys. Rev. Let
    corecore