43 research outputs found

    Radial alignment of microtubules through tubulin polymerization in an evaporating droplet

    Get PDF
    © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Keya, J. J., Kudoh, H., Kabir, A. M. R., Inoue, D., Miyamoto, N., Tani, T., Kakugo, A., & Shikinaka, K. Radial alignment of microtubules through tubulin polymerization in an evaporating droplet. Plos One, 15(4), (2020): e0231352, doi:10.1371/journal.pone.0231352.We report the formation of spherulites from droplets of highly concentrated tubulin solution via nucleation and subsequent polymerization to microtubules (MTs) under water evaporation by heating. Radial alignment of MTs in the spherulites was confirmed by the optical properties of the spherulites observed using polarized optical microscopy and fluorescence microscopy. Temperature and concentration of tubulins were found as important parameters to control the spherulite pattern formation of MTs where evaporation plays a significant role. The alignment of MTs was regulated reversibly by temperature induced polymerization and depolymerization of tubulins. The formation of the MTs patterns was also confirmed at the molecular level from the small angle X-ray measurements. This work provides a simple method for obtaining radially aligned arrays of MTs.Fund receiver: Akira Kakugo Grant-in-Aid for Scientific Research on Innovative Areas (Grant Nos. JP24104004 and 18H05423) and a Grant-in-Aid for Scientific Research (A) (Grant No. 18H03673) from kaken. NO - The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscrip

    細胞骨格構造に倣った剛直円筒状無機高分子による機能材料の創製

    Full text link

    Gel machines constructed from chemically cross-linked actins and myosins

    Get PDF
    We report an ATP fueled soft gel machine reconstructed from muscle proteins of actin and myosin. Chemically cross-linked actin gel filaments, several decade times the length of native actin filaments (F-actin) move along a chemically cross-linked myosin fibrous gel (1 cm long and 50 μm in diameter) with a velocity as high as that of native F-actin, by coupling to ATP hydrolysis. The motility observed in muscle protein-gels suggests that one might reconstruct a soft machine fueled by chemical energy by using actin and myosin molecules as elementary elements

    Integration of Motor Proteins – Towards an ATP Fueled Soft Actuator

    Get PDF
    We present a soft bio-machine constructed from biological motors (actin/myosin). We have found that chemically cross-linked polymer-actin complex gel filaments can move on myosin coated surfaces with a velocity as high as that of native Factin, by coupling to ATP hydrolysis. Additionally, it is shown that the velocity of polymer-actin complex gel depends on the species of polycations binding to the F-actins. Since the design of functional actuators of well-defined size and morphology is important, the structural behavior of polymer-actin complexes has been investigated. Our results show that the morphology and growth size of polymer-actin complex can be controlled by changes in the electrostatic interactions between F-actins and polycations. Our results indicate that bio actuators with desired shapes can be created by using a polymer-actin complex

    Formation of motile assembly of microtubules driven by kinesins

    Get PDF
    Microtubule (MT) and kinesin are rail and motor proteins that are involved in various moving events of eukaryotic cells in natural systems. In vitro, the sliding motion of microtubules (rail) can be reproduced on a kinesin (motor protein)-coated surface coupled with adenosine triphosphate (ATP) hydrolysis, which is called a "motility assay". Based on this technique, a method was recently established to form MT assemblies by an active self-organization (AcSA) process, in which MTs are crosslinked during a sliding motion on a kinesin-coated surface. Streptavidin (ST) was employed as glue to crosslink biotin-labeled MTs. Various shapes, sizes, and motilities were formed with the AcSA MT assemblies, depending on the initial conditions. In this paper, we briefly review our recent work on the formation of MT assemblies on a kinesin-coated surface

    Gel biomachine based on muscle proteins

    Get PDF
    We have created an ATP-fueled soft gel machine constructed from muscle proteins. Chemically cross-linked gels of the polymer-actin complex of the length several decades times the length of native actin filament (F-actin) move on myosin-coated surface with a velocity as high as that of native F-actin, by coupling to ATP hydrolysis. The motility observed in muscle protein-gels suggests that one might construct a soft machine fueled by chemical energy using actin and myosin molecules as elements. We have investigated the growth process of polymer-actin complexes and the correlation between the polarity and the motility of polymer-actin complex gels

    Dynamic self-organization and polymorphism of microtubule assembly through active interactions with kinesin

    Get PDF
    In this study, we show that the energy-dissipative active self-assembly of microtubules (MTs) via a kinesin-based motility system produces various MT assemblies such as bundle-, network-, and ring-shaped structures depending on the initial conditions. Structural polymorphism of the MT assembly is depicted through phase diagrams, and morphogenesis of the MT assembly is discussed based on the following factors: binding force between MTs and motility-driving force from kinesins. This study provides new insights into the energy-dissipative dynamic self-organization of biological systems

    DataSheet1_Electrically conducting films prepared from graphite and lignin in pure water.docx

    Full text link
    In this study, we present electrically conducting self-standing graphite films consisting of lignin derivatives extracted by simultaneous enzymatic saccharification and comminution (SESC). Sonication of graphite powder in the presence of SESC lignin and pure water allows dispersion of the SESC-lignin-attached graphite without addition of other chemicals. The SESC-lignin-attached graphite having a diameter of several micrometers can be used as a surface electroconductive coating and molded into self-standing films by drying. The SESC-lignin-attached graphite film exhibits higher conductivity (∼2,075 S/cm) than graphite-based composites consisting of ordinary lignin derivatives. Manufacturing self-standing films of micrometer-sized graphite using SESC lignin enables high electrical conductivity of the SESC-lignin-attached graphite film. The size of the SESC-lignin-attached graphite is proportional to the conductivity of the film. The SESC-lignin-attached graphite also acts as an antiplasticizer and a conductive filler for polymer films, i.e., conductive films consisting of poly(ethylene glycol) or Li+ montmorillonite can be obtained through a water-based process.</p
    corecore