80 research outputs found
Performance of LI-1542 reusable surface insulation system in a hypersonic stream
The thermal and structural performance LI-1542 reusable surface insulation (RSI) tiles was investigated. The test panel was designed to represent part of the surface structure on a space shuttle orbiter fuselage along a 1250 K isotherm. Aerothermal tests were conducted at a free-stream Mach number of 6.6, a total temperature of 1820 K, Reynolds numbers of 2 millon and 5 million per meter, and dynamic pressures of 26 and 65 kPa. The RSI tiles demonstrated good thermal protection and structural integrity. High temperatures were caused by misalinement in tile height, offset the tile longitudinal alinement, and leakage around thermal seals when differential pressure existed across the panel. The damage tolerance of LI-1542 RSI appeared high. The tile coating crazed early in the test program, but this did not effect the tile integrity. Erosion of the tile edges occurred at forward-facing steps and at the ends of longitudinal gaps because of particle impacts and flow shear
Verification tests of durable TPS concepts
Titanium multiwall, superalloy honeycomb, and Advanced Carbon-carbon (ACC) multipost Thermal Protection System (TPS) concepts are being developed to provide durable protection for surfaces of future space transportation systems. Verification tests including thermal, vibration, acoustic, water absorption, lightning strike, and aerothermal tests are described. Preliminary results indicate that the three TPS concepts are viable up to a surface temperature in excess of 2300 F
Buckling behavior of Rene 41 tubular panels for a hypersonic aircraft wing
The buckling characteristics of Rene 41 tubular panels for a hypersonic aircraft wing were investigated. The panels were repeatedly tested for buckling characteristics using a hypersonic wing test structure and a universal tension/compression testing machine. The nondestructive buckling tests were carried out under different combined load conditions and in different temperature environments. The force/stiffness technique was used to determine the buckling loads of the panel. In spite of some data scattering, resulting from large extrapolations of the data fitting curve (because of the termination of applied loads at relatively low percentages of the buckling loads), the overall test data correlate fairly well with theoretically predicted buckling interaction curves. Also, the structural efficiency of the tubular panels was found to be slightly higher than that of beaded panels
Flutter at Mach 3 of thermally stressed panels and comparison with theory for panels with edge rotational restraint
Flutter at Mach 3 of thermally stressed flat isotropic panel
Thermal and aerothermal performance of a titanium multiwall thermal protection system
A metallic thermal protection system (TPS) concept the multiwall designed for temperature and pressure at Shuttle body point 3140 where the maximum surface temperature is approximately 811 K was tested to evaluate thermal performance and structural integrity. A two tile model of titanium multiwall and a model consisting of a low temperature reusable surface insulation (LRSI) tiles were exposed to 25 simulated thermal and pressure Shuttle entry missions. The two systems performed the same, and neither system deteriorated during the tests. It is indicated that redesign of the multiwall tiles reduces tile thickness and/or weight. A nine tile model of titanium multiwal was tested for radiant heating and aerothermodynamics. Minor design changes that improve structural integrity without having a significant impact on the thermal protection ability of the titanium multiwall TPS are identified. The capability of a titanium multiwall thermal protection system to protect an aluminum surface during a Shuttle type entry trajectory at locations on the vehicle where the maximum surface temperature is below 811 K is demonstrated
Aerothermal performance and structural integrity of a Rene 41 thermal protection system at Mach 6.6
A flightweight panel based on a metallic thermal-protection-system concept for hypersonic and reentry vehicles was subjected repeatedly to thermal cycling by quartz-lamp radiant heating using a thermal history representative of a reentry heat pulse and to aerodynamic heating at heating rates required to sustain a surface temperature of 1089 K (1960 R). The panel consisted of a corrugated heat shield and support members of 0.05-cm (0.02-in.) thick Rene 41 of riveted construction and 5.08-cm (2-in.) thick silica fibrous insulation packages covered by Rene 41 foil and inconel screening. All tests were conducted in the Langley 8-foot high-temperature structures tunnel with the heat shield corrugations alined in the stream direction. The panel sustained 5.33 hr of intermittent radiant heating and 6.5 min of intermittent aerodynamic heating of up to 1-min duration for differential pressures up to 6.2 kPa (0.9 psi) with no apparent degradation of thermal or structural integrity, as indicated by temperature distributions and results from load deflection tests and vibration surveys of natural frequencies
The Oil and Gas Boom: Basic Information About Oil and Gas Activities for Extension Professionals
This article provides basic information for Extension professionals about oil and gas exploration and extraction. Information about hydraulic fracturing, land application of drilling mud, potential community outcomes, and Extension education opportunities are discussed. Family and Consumer Sciences (FCS), Community and Rural Development, and Agriculture Extension state and field staff can use this basic information to help plan successful programming. The issues associated with oil and gas activity have potential impacts on audiences of Extension education. A companion article frames these topics as a public issue for Extension
Framing a Public Issue for Extension: Challenges in Oil and Gas Activity
Extension professionals may be pointed towards controversial and contentious public issues. Oil and gas issues, such as hydraulic fracturing, are a challenge for Extension in many states. Public policy education is a tested method that helps Extension professionals maintain credibility and relevance. The professional can help assist communities that are divided and unable to find common ground. This article applies public policy education to oil and gas activity, including hydraulic fracturing
Estrogen and Progestogen Correlates of the Structure of Female Copulation Calls in Semi-Free-Ranging Barbary Macaques (Macaca sylvanus)
Females of many Old World primates produce conspicuous vocalizations in combination with copulations. Indirect evidence exists that in Barbary macaques (Macaca sylvanus), the structure of these copulation calls is related to changes in reproductive hormone levels. However, the structure of these calls does not vary significantly around the timing of ovulation when estrogen and progestogen levels show marked changes. We here aimed to clarify this paradox by investigating how the steroid hormones estrogen and progesterone are related to changes in the acoustic structure of copulation calls. We collected data on semi-free-ranging Barbary macaques in Gibraltar and at La Forêt des Singes in Rocamadour, France. We determined estrogen and progestogen concentrations from fecal samples and combined them with a fine-grained structural analysis of female copulation calls (N = 775 calls of 11 females). Our analysis indicates a time lag of 3 d between changes in fecal hormone levels, adjusted for the excretion lag time, and in the acoustic structure of copulation calls. Specifically, we found that estrogen increased the duration and frequency of the calls, whereas progestogen had an antagonistic effect. Importantly, however, variation in acoustic variables did not track short-term changes such as the peak in estrogen occurring around the timing of ovulation. Taken together, our results help to explain why female Barbary macaque copulation calls are related to changes in hormone levels but fail to indicate the fertile phase
- …