9,225 research outputs found

    The global geometrical property of jet events in high-energy nuclear collisions

    Full text link
    We present the first theoretical study of medium modifications of the global geometrical pattern, i.e., transverse sphericity (S⊥S_{\perp}) distribution of jet events with parton energy loss in relativistic heavy-ion collisions. In our investigation, POWHEG+PYTHIA is employed to make an accurate description of transverse sphericity in the p+p baseline, which combines the next-to-leading order (NLO) pQCD calculations with the matched parton shower (PS). The Linear Boltzmann Transport (LBT) model of the parton energy loss is implemented to simulate the in-medium evolution of jets. We calculate the event normalized transverse sphericity distribution in central Pb+Pb collisions at the LHC, and give its medium modifications. An enhancement of transverse sphericity distribution at small S⊥S_{\perp} region but a suppression at large S⊥S_{\perp} region are observed in A+A collisions as compared to their p+p references, which indicates that in overall the geometry of jet events in Pb+Pb becomes more pencil-like. We demonstrate that for events with 2 jets in the final-state of heavy-ion collisions, the jet quenching makes the geometry more sphere-like with medium-induced gluon radiation. However, for events with ≥3\ge 3~jets, parton energy loss in the QCD medium leads to the events more pencil-like due to jet number reduction, where less energetic jets may lose their energies and then fall off the jet selection kinematic cut. These two effects offset each other and in the end result in more jetty events in heavy-ion collisions relative to that in p+p.Comment: 9 pages, 9 figure

    The dependence of the IR-radio correlation on the metallicity

    Full text link
    We have compiled a sample of 26 metal-poor galaxies with 12 + log(O/H) < 8.1 with both infrared continuum and 1.4 GHz radio continuum data. By comparing to galaxies at higher metallicity, we have investigated the dependence on the metallicity of the IR-radio relationship at 24 um, 70 um, 100 um and 160 um bands as well as the integrated FIR luminosity. It is found that metal-poor galaxies have on average lower qIR than metal-rich ones with larger offsets at longer IR wavelengths, from -0.06 dex in q24um to -0.6 dex in q160um. The qIR of all galaxies as a whole at 160 um show positive trends with the metallicity and IR-to-FUV ratio, and negative trends with the IR color, while those at lower IR wavelengths show weaker correlations. We proposed a mechanism that invokes combined effects of low obscured-SFR/total-SFR fraction and warm dust temperature at low metallicity to interpret the above behavior of qIR, with the former reducing the IR radiation and the latter further reducing the IR emission at longer IR wavelength. Other mechanisms that are related to the radio emission including the enhanced magnetic field strength and increased thermal radio contribution are unable to reconcile the IR-wavelength-dependent differences of qIR between metal-poor and metal- rich galaxies. In contrast to qIR, the mean total-SFR/radio ratio of metal-poor galaxies is the same as the metal-rich one, indicating the 1.4 GHz radio emission is still an effective tracer of SFRs at low metallicity.Comment: 25 pages, 11 figures, 4 tables. ApJ in pres
    • …
    corecore