238 research outputs found

    On the Performance and Optimization for MEC Networks Using Uplink NOMA

    Full text link
    In this paper, we investigate a non-orthogonal multiple access (NOMA) based mobile edge computing (MEC) network, in which two users may partially offload their respective tasks to a single MEC server through uplink NOMA. We propose a new offloading scheme that can operate in three different modes, namely the partial computation offloading, the complete local computation, and the complete offloading. We further derive a closed-form expression of the successful computation probability for the proposed scheme. As part of the proposed offloading scheme, we formulate a problem to maximize the successful computation probability by jointly optimizing the time for offloading, the power allocation of the two users and the offloading ratios which decide how many tasks should be offloaded to the MEC server. We obtain the optimal solutions in the closed forms. Simulation results show that our proposed scheme can achieve the highest successful computation probability than the existing schemes.Comment: This paper has been accepted by IEEE ICC Workshop 201

    Asymptotic behavior for multi-scale SDEs with monotonicity coefficients driven by L\'evy processes

    Full text link
    In this paper, we study the asymptotic behavior for multi-scale stochastic differential equations driven by L\'evy processes. The optimal strong convergence order 1/2 is obtained by studying the regularity estimates for the solution of Poisson equation with polynomial growth coefficients, and the optimal weak convergence order 1 is got by using the technique of Kolmogorov equation. The main contribution is that the obtained results can be applied to a class of multi-scale stochastic differential equations with monotonicity coefficients, as well as the driven processes can be the general L\'evy processes, which seems new in the existing literature.Comment: 39 pages. To appear in Potential Analysi

    Heterogeneous Power-Splitting Based Two-Way DF Relaying with Non-Linear Energy Harvesting

    Full text link
    Simultaneous wireless information and power transfer (SWIPT) has been recognized as a promising approach to improving the performance of energy constrained networks. In this paper, we investigate a SWIPT based three-step two-way decode-and-forward (DF) relay network with a non-linear energy harvester equipped at the relay. As most existing works require instantaneous channel state information (CSI) while CSI is not fully utilized when designing power splitting (PS) schemes, there exists an opportunity for enhancement by exploiting CSI for PS design. To this end, we propose a novel heterogeneous PS scheme, where the PS ratios are dynamically changed according to instantaneous channel gains. In particular, we derive the closed-form expressions of the optimal PS ratios to maximize the capacity of the investigated network and analyze the outage probability with the optimal dynamic PS ratios based on the non-linear energy harvesting (EH) model. The results provide valuable insights into the effect of various system parameters, such as transmit power of the source, source transmission rate, and source to relay distance on the performance of the investigated network. The results show that our proposed PS scheme outperforms the existing schemes.Comment: This article has been accepted by IEEE GLOBECOM201
    • …
    corecore