455 research outputs found
Recommended from our members
Skybridge-3D-CMOS: A Fine-Grained Vertical 3D-CMOS Technology Paving New Direction for 3D IC
2D CMOS integrated circuit (IC) technology scaling faces severe challenges that result from device scaling limitations, interconnect bottleneck that dominates power and performance, etc. 3D ICs with die-die and layer-layer stacking using Through Silicon Vias (TSVs) and Monolithic Inter-layer Vias (MIVs) have been explored in recent years to generate circuits with considerable interconnect saving for continuing technology scaling. However, these 3D IC technologies still rely on conventional 2D CMOS’s device, circuit and interconnect mindset showing only incremental benefits while adding new challenges reliability issues, robustness of power delivery network design and short-channel effects as technology node scaling.
Skybridge-3D-CMOS (S3DC) is a fine-grained 3D IC fabric that uses vertically-stacked gates and 3D interconnections composed on vertical nanowires to yield orders of magnitude benefits over 2D ICs. This 3D fabric fully uses the vertical dimension instead of relying on a multi-layered 2D mindset. Its core fabric aspects including device, circuit-style, interconnect and heat-extraction components are co-architected considering the major challenges in 3D IC technology. In S3DC, the 3D interconnections provide greater routing capacity in both vertical and horizontal directions compared to conventional 3D ICs, which eliminates the routability issue in conventional 3D IC technology while enabling ultra-high density design and significant benefits over 2D. Also, the improved vertical routing capacity in S3DC is beneficial for achieving robust and high-density power delivery network (PDN) design while conventional 3D IC has design issues in PDN design due to limited routing resource in vertical direction. Additionally, the 3D gate-all-around transistor incorporating with 3D interconnect in S3DC enables significant SRAM design benefits and good tolerance of process variation compared to conventional 3D IC technology as well as 2D CMOS.
The transistor-level (TR-L) monolithic 3D IC (M3D) is the state-of-the-art monolithic 3D technology which shows better benefits than other M3D approaches as well as the TSV-based 3D IC approach. The S3DC is evaluated in large-scale benchmark circuits with comparison to TR-L M3D as well as 2D CMOS. Skybridge yields up to 3x lower power against 2D with no routing congestion in benchmark circuits while TR-L M3D only has up-to 22% power saving with severe routing congestions in the design. The PDN design in S3DC show
Recommended from our members
Architecting NP-Dynamic Skybridge
With the scaling of technology nodes, modern CMOS integrated circuits face severe fundamental challenges that stem from device scaling limitations, interconnection bottlenecks and increasing manufacturing complexities. These challenges drive researchers to look for revolutionary technologies beyond the end of CMOS roadmap. Towards this end, a new nanoscale 3-D computing fabric for future integrated circuits, Skybridge, has been proposed [1]. In this new fabric, core aspects from device to circuit style, connectivity, thermal management and manufacturing pathway are co-architected in a 3-D fabric-centric manner.
However, the Skybridge fabric uses only n-type transistors in a dynamic circuit style for logic and memory implementations. Therefore, it requires complicated clocking schemes to overcome signal monotonicity associated with cascading dynamic logic gates. For Skybridge’s large-scale circuits, the dynamic circuit style requires cascaded stages to be micro-pipelined, which results in large number of buffers used for storing minterms causing significant overhead in terms of area and power. Moreover, implementation of logic is limited to NAND or AND-of-NAND based logic expressions, which does not always result in compact circuits. In this work, we propose an extension of original Skybridge fabric, called NP-Dynamic-Skybridge, to solve these challenges by using both n-and p-type transistors in an innovative circuit style. Here, every stage in a given circuit is implemented by either n-type or p-type dynamic logic.
Cascading n- and p-type dynamic logic effectively avoids signal monotonicity problem, and allows combinational-like circuit implementation. This helps to simplify the clocking scheme for cascaded logics requiring only one set of global precharge and evaluate clock signals. And also it expands the degree of expressing logic enabling expressions such as NOR, OR-of-NORs, in addition to those previously mentioned. Furthermore, the number of pipeline stages is significantly reduced for a given logic function, and buffer requirements are less compared with Skybridge 3D fabric thus improving on area and power metrics. Initial evaluation for NP-Dynamic-Skybridge’s 4-bit carry look-ahead adder shows up to 2x density benefits over Skybridge 3-D fabric and at least 17% power/throughput benefit
Stability of Two-Dimensional Soft Quasicrystals
The relative stability of two-dimensional soft quasicrystals is examined
using a recently developed projection method which provides a unified numerical
framework to compute the free energy of periodic crystal and quasicrystals.
Accurate free energies of numerous ordered phases, including dodecagonal,
decagonal and octagonal quasicrystals, are obtained for a simple model, i.e.
the Lifshitz-Petrich free energy functional, of soft quasicrystals with two
length-scales. The availability of the free energy allows us to construct phase
diagrams of the system, demonstrating that, for the Lifshitz-Petrich model, the
dodecagonal and decagonal quasicrystals can become stable phases, whereas the
octagonal quasicrystal stays as a metastable phase.Comment: 11 pages, 7 figure
Submodular Load Clustering with Robust Principal Component Analysis
Traditional load analysis is facing challenges with the new electricity usage
patterns due to demand response as well as increasing deployment of distributed
generations, including photovoltaics (PV), electric vehicles (EV), and energy
storage systems (ESS). At the transmission system, despite of irregular load
behaviors at different areas, highly aggregated load shapes still share similar
characteristics. Load clustering is to discover such intrinsic patterns and
provide useful information to other load applications, such as load forecasting
and load modeling. This paper proposes an efficient submodular load clustering
method for transmission-level load areas. Robust principal component analysis
(R-PCA) firstly decomposes the annual load profiles into low-rank components
and sparse components to extract key features. A novel submodular cluster
center selection technique is then applied to determine the optimal cluster
centers through constructed similarity graph. Following the selection results,
load areas are efficiently assigned to different clusters for further load
analysis and applications. Numerical results obtained from PJM load demonstrate
the effectiveness of the proposed approach.Comment: Accepted by 2019 IEEE PES General Meeting, Atlanta, G
- …