66 research outputs found
Sc2Ga2CuO7: A possible quantum spin liquid near the percolation threshold
Sc2Ga2CuO7 (SGCO) crystallizes in a hexagonal structure (space group: P63/mmc), which can be seen as an alternating
stacking of single and double triangular layers. Combining neutron, x-ray, and resonant x-ray diffraction we establish that
the single triangular layers are mainly populated by non-magnetic Ga3+ ions (85% Ga and 15% Cu), while the bi-layers have comparable population of Cu2+ and Ga3+ ions (43% Cu and 57% Ga). Our susceptibility measurements in the temperature range 1.8 - 400 K give no indication of any spin-freezing or magnetic long-range order (LRO).We infer an effective paramagnetic moment μeff = 1.79±0.09 μB and a Curie-Weiss temperature �CW of about −44 K, suggesting antiferromagnetic interactions between the Cu2+(S = 1/2) ions. Low-temperature neutron powder diffraction data showed no evidence for LRO down to 1.5
K. In our specific heat data as well, no anomalies were found down to 0.35 K, in the field range 0-140 kOe. The magnetic
specific heat, Cm, exhibits a broad maximum at around 2.5 K followed by a nearly power law Cm/ T� behavior at lower
temperatures, with � increasing from 0.3 to 1.9 as a function of field for fields upto 90 kOe and then remaining at 1.9 for fields
upto 140 kOe. Our results point to a disordered ground state in SGCO
Ba3 Mx Ti3−x O9 (M = Ir, Rh): A family of 5d/4d-based diluted quantum spin liquids
We report the structural and magnetic properties of the 4d (M = Rh) based and 5d (M = Ir) based systems Ba3Mx Ti3−x O9 (nominally x = 0.5, 1). The studied compositions were found to crystallize in a hexagonal structure with the centrosymmetric space group P 63/mmc. The structures comprise of A2O9 polyhedra [with the A site (possibly) statistically occupied by M and Ti] in which pairs of transition metal ions are stacked along the crystallographic c axis. These pairs form triangular bilayers in the ab plane. The magnetic Rh and Ir ions occupy these bilayers, diluted by Ti ions even for x = 1. These bilayers are separated by a triangular layer which is dominantly occupied by Ti ions. From magnetization measurements we infer strong antiferromagnetic couplings for all of the materials but the absence of any spin-freezing or spin-ordering down to 2 K. Further, specific heat measurements down to 0.35 K show no sign of a phase transition for any of the compounds. Based on these thermodynamic measurements we propose the emergence of a quantum spin liquid ground state for Ba3Rh0.5Ti2.5O9, and Ba3Ir0.5Ti2.5O9, in addition to the already reported Ba3IrTi2O9
High pressure behavior of CsC8 graphite intercalation compound
International audienceThe high pressure phase diagram of CsC8 graphite intercalated compound has been investigated at ambient temperature up to 32 GPa. Combining X-ray and neutron diffraction, Raman and X- ray absorption spectroscopies, we report for the first time that CsC8, when pressurized, undergoes phase transitions around 2.0, 4.8 and 8 GPa. Possible candidate lattice structures and the transition mechanism involved are proposed. We show that the observed transitions involve the structural re- arrangement in the Cs sub-network while the distance between the graphitic layers is continuously reduced at least up to 8.9 GPa. Around 8 GPa, important modifications of signatures of the electronic structure measured by Raman and X-ray absorption spectroscopies evidence the onset of a new transition
- …