156 research outputs found

    Src-mediated coupling of focal adhesion kinase to integrin αvβ5 in vascular endothelial growth factor signaling

    Get PDF
    Vascular endothelial growth factor (VEGF) promotes vascular permeability (VP) and neovascularization, and is required for development. We find that VEGF-stimulated Src activity in chick embryo blood vessels induces the coupling of focal adhesion kinase (FAK) to integrin αvβ5, a critical event in VEGF-mediated signaling and biological responsiveness. In contrast, FAK is constitutively associated with β1 and β3 integrins in the presence or absence of growth factors. In cultured endothelial cells, VEGF, but not basic fibroblast growth factor, promotes the Src-mediated phosphorylation of FAK on tyrosine 861, which contributes to the formation of a FAK/αvβ5 signaling complex. Moreover, formation of this FAK/αvβ5 complex is significantly reduced in pp60c-src-deficient mice. Supporting these results, mice deficient in either pp60c-src or integrin β5, but not integrin β3, have a reduced VP response to VEGF. This FAK/αvβ5 complex was also detected in epidermal growth factor-stimulated epithelial cells, suggesting a function for this complex outside the endothelium. Our findings indicate that Src can coordinate specific growth factor and extracellular matrix inputs by recruiting integrin αvβ5 into a FAK-containing signaling complex during growth factor–mediated biological responses

    Exploring Adaptive Management for Greater Sage Grouse in Northern Montana in the Face of Climate Change

    Get PDF
    A collaboration has begun in Montana among several state and federal agencies and non-governmental organizations interested in the management of greater sage grouse (Centrocercus urophasianus) in a > 5,000,000-ac (> 20,234-ha) landscape including the Charles M. Russell National Wildlife Refuge. The first step was conducting personal interviews with field biologists and managers in the general area to assess what management actions they are making. Using this information, we conducted an on-line survey to further identify those actions and how they are made. Finally, almost 40 managers and scientists met to discuss whether an adaptive management approach might be useful to gain an understanding of the interaction among habitats and management actions and how this will be affected by annual weather and climate patterns. A conceptual model of how these factors affect the life cycle of grouse has been drafted, and we are gathering comments on it. The intent is for that to be used as an ecological response model for assessing the effects of possible climate change scenarios. Future work will entail: (1) further delineation of management actions and the social networks associated with them, (2) building and evaluating a working model using rapid prototype methods, (3) conducting futures analyses of associated landscapes, (4) continuing to foster collaborative effort, and (5) working one-onone with managers to evaluate model and adaptive management applicability using such tools as LCMAP (Landscape Conservation Management and Analysis Portal)

    Efficacy of iron fortification compared to iron supplementation among Vietnamese schoolchildren

    Get PDF
    The effect of iron fortification is generally assumed to be less than iron supplementation; however, the magnitude of difference in effects is not known. The present study aims to compare the efficacy of these two strategies on anaemia and iron status. After screening on low Hb, 425 anaemic children in six primary schools in Tam Nong district of Phu Tho province were included in a randomized, placebo-controlled trial comparing two groups receiving iron fortified instant noodles or iron supplementation for 6 months and a control group, with children in all groups having been dewormed. Blood samples were collected before and after intervention for haemoglobin, serum ferritin (SF), serum transferrin receptor (TfR), C-reactive protein (CRP), and haemoglobinopathies analysis. Regression analysis was used to assess the effect of iron fortification and iron supplementation on haemoglobin concentration, SF, TfR, body iron, and anaemic status as outcome variables. The improvement of haemoglobin, SF, and body iron level in the group receiving iron fortification was 42% (2.6 g/L versus 6.2 g/L), 20% (23.5 μg/L versus 117.3 μg/L), and 31.3% (1.4 mg/kg versus 4.4 mg/kg) of that in the iron supplementation group. The prevalence of anaemia dropped to 15.1% in the control group, with an additional reduction of anaemia of 8.5% in the iron supplementation group. The additional reduction due to iron fortification was 5.4%, which amounts to well over 50% of the impact of supplementation. In conclusion, the efficacy of iron fortification based on reduction of prevalence of anaemia, and on the change in haemoglobin level, is about half of the maximum impact of supplementation in case of optimal compliance. Thus, in a population of anaemic children with mild iron deficiency, iron fortification should be the preferred strategy to combat anaemia

    KrasP34R and KrasT58I mutations induce distinct RASopathy phenotypes in mice.

    Get PDF
    Somatic KRAS mutations are highly prevalent in many cancers. In addition, a distinct spectrum of germline KRAS mutations causes developmental disorders called RASopathies. The mutant proteins encoded by these germline KRAS mutations are less biochemically and functionally activated than those in cancer. We generated mice harboring conditional KrasLSL-P34Rand KrasLSL-T58I knock-in alleles and characterized the consequences of each mutation in vivo. Embryonic expression of KrasT58I resulted in craniofacial abnormalities reminiscent of those seen in RASopathy disorders, and these mice exhibited hyperplastic growth of multiple organs, modest alterations in cardiac valvulogenesis, myocardial hypertrophy, and myeloproliferation. By contrast, embryonic KrasP34R expression resulted in early perinatal lethality from respiratory failure due to defective lung sacculation, which was associated with aberrant ERK activity in lung epithelial cells. Somatic Mx1-Cre-mediated activation in the hematopoietic compartment showed that KrasP34R and KrasT58I expression had distinct signaling effects, despite causing a similar spectrum of hematologic diseases. These potentially novel strains are robust models for investigating the consequences of expressing endogenous levels of hyperactive K-Ras in different developing and adult tissues, for comparing how oncogenic and germline K-Ras proteins perturb signaling networks and cell fate decisions, and for performing preclinical therapeutic trials

    SNAP-tagged Chikungunya Virus Replicons Improve Visualisation of Non-Structural Protein 3 by Fluorescence Microscopy

    Get PDF
    Chikungunya virus (CHIKV), a mosquito-borne alphavirus, causes febrile disease, muscle and joint pain, which can become chronic in some individuals. The non-structural protein 3 (nsP3) plays essential roles during infection, but a complete understanding of its function is lacking. Here we used a microscopy-based approach to image CHIKV nsP3 inside human cells. The SNAP system consists of a self-labelling enzyme tag, which catalyses the covalent linking of exogenously supplemented synthetic ligands. Genetic insertion of this tag resulted in viable replicons and specific labelling while preserving the effect of nsP3 on stress granule responses and co-localisation with GTPase Activating Protein (SH3 domain) Binding Proteins (G3BPs). With sub-diffraction, three-dimensional, optical imaging, we visualised nsP3-positive structures with variable density and morphology, including high-density rod-like structures, large spherical granules, and small, low-density structures. Next, we confirmed the utility of the SNAP tag for studying protein turnover by pulse-chase labelling. We also revealed an association of nsP3 with cellular lipid droplets and examined the spatial relationships between nsP3 and the non-structural protein 1 (nsP1). Together, our study provides a sensitive, specific, and versatile system for fundamental research into the individual functions of a viral non-structural protein during infection with a medically important arthropod-borne virus (arbovirus)

    Computational Design of a PDZ Domain Peptide Inhibitor that Rescues CFTR Activity

    Get PDF
    The cystic fibrosis transmembrane conductance regulator (CFTR) is an epithelial chloride channel mutated in patients with cystic fibrosis (CF). The most prevalent CFTR mutation, ΔF508, blocks folding in the endoplasmic reticulum. Recent work has shown that some ΔF508-CFTR channel activity can be recovered by pharmaceutical modulators (“potentiators” and “correctors”), but ΔF508-CFTR can still be rapidly degraded via a lysosomal pathway involving the CFTR-associated ligand (CAL), which binds CFTR via a PDZ interaction domain. We present a study that goes from theory, to new structure-based computational design algorithms, to computational predictions, to biochemical testing and ultimately to epithelial-cell validation of novel, effective CAL PDZ inhibitors (called “stabilizers”) that rescue ΔF508-CFTR activity. To design the “stabilizers”, we extended our structural ensemble-based computational protein redesign algorithm to encompass protein-protein and protein-peptide interactions. The computational predictions achieved high accuracy: all of the top-predicted peptide inhibitors bound well to CAL. Furthermore, when compared to state-of-the-art CAL inhibitors, our design methodology achieved higher affinity and increased binding efficiency. The designed inhibitor with the highest affinity for CAL (kCAL01) binds six-fold more tightly than the previous best hexamer (iCAL35), and 170-fold more tightly than the CFTR C-terminus. We show that kCAL01 has physiological activity and can rescue chloride efflux in CF patient-derived airway epithelial cells. Since stabilizers address a different cellular CF defect from potentiators and correctors, our inhibitors provide an additional therapeutic pathway that can be used in conjunction with current methods

    An integrated cell atlas of the lung in health and disease

    Get PDF
    Single-cell technologies have transformed our understanding of human tissues. Yet, studies typically capture only a limited number of donors and disagree on cell type definitions. Integrating many single-cell datasets can address these limitations of individual studies and capture the variability present in the population. Here we present the integrated Human Lung Cell Atlas (HLCA), combining 49 datasets of the human respiratory system into a single atlas spanning over 2.4 million cells from 486 individuals. The HLCA presents a consensus cell type re-annotation with matching marker genes, including annotations of rare and previously undescribed cell types. Leveraging the number and diversity of individuals in the HLCA, we identify gene modules that are associated with demographic covariates such as age, sex and body mass index, as well as gene modules changing expression along the proximal-to-distal axis of the bronchial tree. Mapping new data to the HLCA enables rapid data annotation and interpretation. Using the HLCA as a reference for the study of disease, we identify shared cell states across multiple lung diseases, including SPP

    An integrated cell atlas of the lung in health and disease

    Get PDF
    Single-cell technologies have transformed our understanding of human tissues. Yet, studies typically capture only a limited number of donors and disagree on cell type definitions. Integrating many single-cell datasets can address these limitations of individual studies and capture the variability present in the population. Here we present the integrated Human Lung Cell Atlas (HLCA), combining 49 datasets of the human respiratory system into a single atlas spanning over 2.4 million cells from 486 individuals. The HLCA presents a consensus cell type re-annotation with matching marker genes, including annotations of rare and previously undescribed cell types. Leveraging the number and diversity of individuals in the HLCA, we identify gene modules that are associated with demographic covariates such as age, sex and body mass index, as well as gene modules changing expression along the proximal-to-distal axis of the bronchial tree. Mapping new data to the HLCA enables rapid data annotation and interpretation. Using the HLCA as a reference for the study of disease, we identify shared cell states across multiple lung diseases, including SPP1+ profibrotic monocyte-derived macrophages in COVID-19, pulmonary fibrosis and lung carcinoma. Overall, the HLCA serves as an example for the development and use of large-scale, cross-dataset organ atlases within the Human Cell Atlas

    Sequence Composition and Gene Content of the Short Arm of Rye (Secale cereale) Chromosome 1

    Get PDF
    BACKGROUND: The purpose of the study is to elucidate the sequence composition of the short arm of rye chromosome 1 (Secale cereale) with special focus on its gene content, because this portion of the rye genome is an integrated part of several hundreds of bread wheat varieties worldwide. METHODOLOGY/PRINCIPAL FINDINGS: Multiple Displacement Amplification of 1RS DNA, obtained from flow sorted 1RS chromosomes, using 1RS ditelosomic wheat-rye addition line, and subsequent Roche 454FLX sequencing of this DNA yielded 195,313,589 bp sequence information. This quantity of sequence information resulted in 0.43× sequence coverage of the 1RS chromosome arm, permitting the identification of genes with estimated probability of 95%. A detailed analysis revealed that more than 5% of the 1RS sequence consisted of gene space, identifying at least 3,121 gene loci representing 1,882 different gene functions. Repetitive elements comprised about 72% of the 1RS sequence, Gypsy/Sabrina (13.3%) being the most abundant. More than four thousand simple sequence repeat (SSR) sites mostly located in gene related sequence reads were identified for possible marker development. The existence of chloroplast insertions in 1RS has been verified by identifying chimeric chloroplast-genomic sequence reads. Synteny analysis of 1RS to the full genomes of Oryza sativa and Brachypodium distachyon revealed that about half of the genes of 1RS correspond to the distal end of the short arm of rice chromosome 5 and the proximal region of the long arm of Brachypodium distachyon chromosome 2. Comparison of the gene content of 1RS to 1HS barley chromosome arm revealed high conservation of genes related to chromosome 5 of rice. CONCLUSIONS: The present study revealed the gene content and potential gene functions on this chromosome arm and demonstrated numerous sequence elements like SSRs and gene-related sequences, which can be utilised for future research as well as in breeding of wheat and rye
    corecore