1,643 research outputs found
On the energetic origin of self-limiting trenches formed around Ge/Si quantum dots
At high growth temperatures, the misfit strain at the boundary of Ge quantum
dots on Si(001) is relieved by formation of trenches around the base of the
islands. The depth of the trenches has been observed to saturate at a level
that depends on the base-width of the islands. Using finite element
simulations, we show that the self-limiting nature of trench depth is due to a
competition between the elastic relaxation energy gained by the formation of
the trench and the surface energy cost for creating the trench. Our simulations
predict a linear increase of the trench depth with the island radius, in
quantitative agreement with the experimental observations of Drucker and
coworkers
Dynamic of a non homogeneously coarse grained system
To study materials phenomena simultaneously at various length scales,
descriptions in which matter can be coarse grained to arbitrary levels, are
necessary. Attempts to do this in the static regime (i.e. zero temperature)
have already been developed. In this letter, we present an approach that leads
to a dynamics for such coarse-grained models. This allows us to obtain
temperature-dependent and transport properties. Renormalization group theory is
used to create new local potentials model between nodes, within the
approximation of local thermodynamical equilibrium. Assuming that these
potentials give an averaged description of node dynamics, we calculate thermal
and mechanical properties. If this method can be sufficiently generalized it
may form the basis of a Molecular Dynamics method with time and spatial
coarse-graining.Comment: 4 pages, 4 figure
Electronic and magnetic properties of some rare-earth dihydrides and dideuterides
Mössbauer spectroscopy has been used to study the electronic and magnetic properties of a number of rare-earth dihydrides and dideuterides. In stoichiometric ErH2 and DyH2, magnetic transitions and crystal field ground states have been established. In non-stoichiometric compounds DyH2+x and (Er)HoH2+x changes of the rare-earth point symmetry due to distributions in hydrogen site occupations are seen. This results in increases in the magnetic transition temperatures and distributions in the magnetic moments
The Thermal Evolution of Ices in the Environments of Newly Formed Stars: The CO_2 Diagnostic
Archival data from the Infrared Spectrometer of the Spitzer Space Telescope are used to study the 15 μm absorption feature of solid CO_2 toward 28 young stellar objects (YSOs) of approximately solar mass. Fits to the absorption profile using laboratory spectra enable categorization according to the degree of thermal processing of the ice matrix that contains the CO_2. The majority of YSOs in our sample (20 out of 28) are found to be consistent with a combination of polar (H_2O-rich) and nonpolar (CO-rich) ices at low temperature; the remainder exhibit profile structure consistent with partial crystallization as the result of significant heating. Ice-phase column densities of CO_2 are determined and compared with those of other species. Lines of sight with crystallization signatures in their spectra are found to be systematically deficient in solid-phase CO, as expected if CO is being sublimated in regions where the ices are heated to crystallization temperatures. Significant variation is found in the CO2 abundance with respect to both H_2O (the dominant ice constituent) and total dust column (quantified by the extinction, AV ). YSOs in our sample display typically higher CO_2 concentrations (independent of evidence for thermal processing) in comparison to quiescent regions of the prototypical cold molecular cloud. This suggests that enhanced CO_2 production is driven by photochemical reactions in proximity to some YSOs, and that photoprocessing and thermal processing may occur independently
A Catalog of Background Stars Reddened by Dust in the Taurus Dark Clouds
Normal field stars located behind dense clouds are a valuable resource in
interstellar astrophysics, as they provide continua in which to study phenomena
such as gas-phase and solid-state absorption features, interstellar extinction
and polarization. This paper reports the results of a search for highly
reddened stars behind the Taurus Dark Cloud complex. We use the Two Micron All
Sky Survey (2MASS) Point Source Catalog to survey a 50 sq deg area of the cloud
to a limiting magnitude of K = 10.0. Photometry in the 1.2-2.2 micron passbands
from 2MASS is combined with photometry at longer infrared wavelengths (3.6-12
micron) from the Spitzer Space Telescope and the Infrared Astronomical
Satellite to provide effective discrimination between reddened field stars and
young stellar objects (YSOs) embedded in the cloud. Our final catalog contains
248 confirmed or probable background field stars, together with estimates of
their total visual extinctions, which span the range 2-29 mag. We also identify
the 2MASS source J04292083+2742074 (IRAS 04262+2735) as a previously
unrecognized candidate YSO, based on the presence of infrared emission greatly
in excess of that predicted for a normal reddened photosphere at wavelengths >5
microns
Phase Diagram of the Attractive Hubbard Model with Inhomogeneous Interactions
The phase diagram of the attractive Hubbard model with spatially
inhomogeneous interactions is obtained using a single site dynamical mean field
theory like approach. The model is characterized by three parameters: the
interaction strength, the active fraction (fraction of sites with the
attractive interaction), and electron filling. The calculations indicate that
in a parameter regime with intermediate values of interaction strength
(compared to the bare bandwidth of the electrons), and intermediate values of
the active fraction, "non-BCS" superconductivity is obtained. The results of
this work are likely to be relevant to many systems with spatially
inhomogeneous superconductivity such as strongly correlated oxides, systems
with negative U centers, and, in future, cold atom optical lattices.Comment: 9 pages, 7 figures, to appear in Physical Review
First and Second Sound Modes of a Bose-Einstein Condensate in a Harmonic Trap
We have calculated the first and second sound modes of a dilute interacting
Bose gas in a spherical trap for temperatures () and for
systems with to particles. The second sound modes (which exist
only below ) generally have a stronger temperature dependence than the
first sound modes. The puzzling temperature variations of the sound modes near
recently observed at JILA in systems with particles match
surprisingly well with those of the first and second sound modes of much larger
systems.Comment: a shorten version, more discussions are given on the nature of the
second sound. A long footnote on the recent work of Zaremba, Griffin, and
Nikuni (cond-mat/9705134) is added, the spectrum of the (\ell=1, n_2=0) mode
is included in fig.
Diluted Josephson-junction arrays in a magnetic field: phase coherence and vortex glass thresholds
The effects of random dilution of junctions on a two-dimensional
Josephson-junction array in a magnetic field are considered. For rational
values of the average flux quantum per plaquette , the superconducting
transition temperature vanishes, for increasing dilution, at a critical value
, while the vortex ordering remains stable up to , much
below the value corresponding to the geometric percolation threshold. For
, the array behaves as a zero-temperature vortex-glass.
Numerical results for from defect energy calculations are presented
which are consistent with this scenario.Comment: 4 pages, 4 figures, to appear in Phys. Rev.
Local Spin-Gauge Symmetry of the Bose-Einstein Condensates in Atomic Gases
The Bose-Einstein condensates of alkali atomic gases are spinor fields with
local ``spin-gauge" symmetry. This symmetry is manifested by a superfluid
velocity (or gauge field) generated by the Berry phase of the
spin field. In ``static" traps, splits the degeneracy of the
harmonic energy levels, breaks the inversion symmetry of the vortex nucleation
frequency , and can lead to {\em vortex ground states}. The
inversion symmetry of , however, is not broken in ``dynamic"
traps. Rotations of the atom cloud can be generated by adiabatic effects
without physically rotating the entire trap.Comment: Typos in the previous version corrected, thanks to the careful
reading of Daniel L. Cox. 13 pages + 2 Figures in uuencode + gzip for
- …