73 research outputs found

    Masked Vision-Language Transformers for Scene Text Recognition

    Full text link
    Scene text recognition (STR) enables computers to recognize and read the text in various real-world scenes. Recent STR models benefit from taking linguistic information in addition to visual cues into consideration. We propose a novel Masked Vision-Language Transformers (MVLT) to capture both the explicit and the implicit linguistic information. Our encoder is a Vision Transformer, and our decoder is a multi-modal Transformer. MVLT is trained in two stages: in the first stage, we design a STR-tailored pretraining method based on a masking strategy; in the second stage, we fine-tune our model and adopt an iterative correction method to improve the performance. MVLT attains superior results compared to state-of-the-art STR models on several benchmarks. Our code and model are available at https://github.com/onealwj/MVLT.Comment: The paper is accepted by the 33rd British Machine Vision Conference (BMVC 2022

    Possible association between androgenic alopecia and risk of prostate cancer and testicular germ cell tumor: a systematic review and meta-analysis

    No full text
    Abstract Background A number of studies have investigated the association between androgenic alopecia (AGA) and cancer risk, but they have yielded inconsistent results. Therefore, this study was conducted to explore this controversial subject. Methods A literature database search was performed according to predefined criteria. An odds ratio (OR) or a hazard ratio (HR) with 95% confidence intervals (CIs) was retained to evaluate the relationship between the incidence of cancer or cancer-specific mortality and categories of AGA. Then a pooled OR or HR was derived. Results The pooled results showed that no specific degree of baldness had an influence on the incidence of cancer or cancer-specific mortality. However, AGA, especially frontal baldness, with the incidence of testicular germ cell tumor (TGCT) (OR = 0.69; 95% CI = 0.58–0.83). A significant increase of risk was observed in relation to high grade prostate cancer (PC) (OR = 1.42; 95% CI 1.02–1.99) and vertex with/without frontal baldness was associated with PC risk. Conclusions The study results supported the hypothesis that AGA is negatively associated with TGCT risk and suggested an overlapping pathophysiological mechanism between them, while the viewpoint that AGA can be used as a phenotypic marker for PC risk was poorly supported

    Acid-Assisted Ball Mill Synthesis of Carboxyl-Functional-Group-Modified Prussian Blue as Sodium-Ion Battery Cathode

    No full text
    Prussian blue attracts the attention of many researchers as a promising candidate for use in sodium-ion battery cathodes due to its open frameworks and high working potential. However, the interstitial water in its crystal structure and its poor electronic conductivity limits its performance in practical sodium-ion batteries. Here, acid-assisted ball milling synthesis was employed as a versatile method for the production of surface-modified Prussian blue. With (CH3COO)2Fe being used as the raw material, the Prussian blue produced using ball milling synthesis was modified by the carboxyl functional group on its surface, which resulted in lower interstitial water content and enhanced electrochemical cycling performance. In addition, ball milling synthesis provided the as-prepared Prussian blue with a large surface area, improving its electrochemical rate performance. When used as the cathode of sodium-ion batteries, as-prepared Prussian blue delivered a specific capacity of 145.3 mAh g−1 at 0.2 C and 113.7 mAh g−1 at 1 C, maintaining 54.5% of the initial capacity after 1000 cycles at 1 C (1 C = 170 mA g−1). Furthermore, a solid-state sodium-ion battery was mounted, with as-prepared Prussian blue being employed as the cathode and Na metal as the anode, which delivered a high specific capacity of 128.7 mAh g−1 at 0.2 C. The present study put forward an effective solution to overcome the limitations of Prussian blue for its commercial application

    An efficient synthesis of 2-vinylic cyclic 1,3-alkadienes via the Cp{*}Ru(II)-catalyzed intermolecular coupling reactions of alkynes and cyclic allenes

    No full text
    2-Vinylic cyclic 1,3-alkadienes can be obtained with moderate to good yields via the Cp{*}RuCl(PPh3)(2)-catalyzed coupling reaction of alkynes with cyclic allenes

    Modification of Poly(Ethylene 2,5-Furandicarboxylate) with Poly(Ethylene glycol) for Biodegradable Copolyesters with Good Mechanical Properties and Spinnability

    No full text
    Using 2,5-furandicarboxylic acid, ethylene glycol, and poly(ethylene glycol) as raw materials and ethylene glycol antimony as a catalyst, poly(ethylene furandicarboxylate) (PEF) and polyethylene glycol (PEG) copolymers (PEGFs) were synthesized by transesterification by changing the molecular weight of PEG (from 600 to 10,000 g/mol) and the PEG content (from 10 to 60 wt %). The thermal, hydrophilic, degradation, and spinnility characteristics of these copolymers were then investigated. Thermogravimetric analysis shows that PEGF is thermally stable at 62 °C, much lower than the temperature for PEF. The intrinsic viscosity of the obtained copolyester was between 0.67 and 0.99 dL/g, which is higher than the viscosity value of PEF. The contact angle experiment shows that the hydrophilicity of PEGFs is improved (the surface contact angle is reduced from 91.9 to 63.3°), which gives PEGFs a certain degradability, and the maximum mass loss can reach approximately 15%. Melt spinning experiments show that the PEGF polymer has poor spinnability, but the mechanical properties of the polymer monofilament are better

    Design, Synthesis, and Biological Evaluation of Axitinib Derivatives

    No full text
    Axitinib is an approved kinase inhibitor for the therapy of advanced metastatic renal cell carcinoma (RCC). It prevents angiogenesis, cellular adhesion, and induces apoptosis of cancer cells. Here, nine axitinib derivatives were designed by replacing the C=C moiety with the N=N group, and the substituted benzene or pyrrole analogs were considered to replace the pyridine ring. Biological activity results showed that most of nascent derivatives exhibited favorable VEGFR-2 kinase inhibitory activities, and TM6, 7, 9, and 11 behaved more potent anti-proliferative activities than axitinib. This novel series of compounds shows a potential for the treatment of solid tumors and other diseases where angiogenesis plays an important role

    Lactate Efflux Inhibition by Syrosingopine/LOD Co‐Loaded Nanozyme for Synergetic Self‐Replenishing Catalytic Cancer Therapy and Immune Microenvironment Remodeling

    No full text
    Abstract An effective systemic mechanism regulates tumor development and progression; thus, a rational design in a one‐stone‐two‐birds strategy is meant for cancer treatment. Herein, a hollow Fe3O4 catalytic nanozyme carrier co‐loading lactate oxidase (LOD) and a clinically‐used hypotensor syrosingopine (Syr) are developed and delivered for synergetic cancer treatment by augmented self‐replenishing nanocatalytic reaction, integrated starvation therapy, and reactivating anti‐tumor immune microenvironment. The synergetic bio‐effects of this nanoplatform stemmed from the effective inhibition of lactate efflux through blocking the monocarboxylate transporters MCT1/MCT4 functions by the loaded Syr as a trigger. Sustainable production of hydrogen peroxide by catalyzation of the increasingly residual intracellular lactic acid by the co‐delivered LOD and intracellular acidification enabled the augmented self‐replenishing nanocatalytic reaction. Large amounts of produced reactive oxygen species (ROS) damaged mitochondria to inhibit oxidative phosphorylation as the substituted energy supply upon the hampered glycolysis pathway of tumor cells. Meanwhile, remodeling anti‐tumor immune microenvironment is implemented by pH gradient reversal, promoting the release of proinflammatory cytokines, restored effector T and NK cells, increased M1‐polarize tumor‐associated macrophages, and restriction of regulatory T cells. Thus, the biocompatible nanozyme platform achieved the synergy of chemodynamic/immuno/starvation therapies. This proof‐of‐concept study represents a promising candidate nanoplatform for synergetic cancer treatment
    corecore