11,409 research outputs found

    Machine Learning Topological Invariants with Neural Networks

    Full text link
    In this Letter we supervisedly train neural networks to distinguish different topological phases in the context of topological band insulators. After training with Hamiltonians of one-dimensional insulators with chiral symmetry, the neural network can predict their topological winding numbers with nearly 100% accuracy, even for Hamiltonians with larger winding numbers that are not included in the training data. These results show a remarkable success that the neural network can capture the global and nonlinear topological features of quantum phases from local inputs. By opening up the neural network, we confirm that the network does learn the discrete version of the winding number formula. We also make a couple of remarks regarding the role of the symmetry and the opposite effect of regularization techniques when applying machine learning to physical systems.Comment: 6 pages, 4 figures and 1 table + 2 pages of supplemental materia

    Show, Attend and Read: A Simple and Strong Baseline for Irregular Text Recognition

    Full text link
    Recognizing irregular text in natural scene images is challenging due to the large variance in text appearance, such as curvature, orientation and distortion. Most existing approaches rely heavily on sophisticated model designs and/or extra fine-grained annotations, which, to some extent, increase the difficulty in algorithm implementation and data collection. In this work, we propose an easy-to-implement strong baseline for irregular scene text recognition, using off-the-shelf neural network components and only word-level annotations. It is composed of a 3131-layer ResNet, an LSTM-based encoder-decoder framework and a 2-dimensional attention module. Despite its simplicity, the proposed method is robust and achieves state-of-the-art performance on both regular and irregular scene text recognition benchmarks. Code is available at: https://tinyurl.com/ShowAttendReadComment: Accepted to Proc. AAAI Conference on Artificial Intelligence 201

    Optimization Framework and Graph-Based Approach for Relay-Assisted Bidirectional OFDMA Cellular Networks

    Full text link
    This paper considers a relay-assisted bidirectional cellular network where the base station (BS) communicates with each mobile station (MS) using OFDMA for both uplink and downlink. The goal is to improve the overall system performance by exploring the full potential of the network in various dimensions including user, subcarrier, relay, and bidirectional traffic. In this work, we first introduce a novel three-time-slot time-division duplexing (TDD) transmission protocol. This protocol unifies direct transmission, one-way relaying and network-coded two-way relaying between the BS and each MS. Using the proposed three-time-slot TDD protocol, we then propose an optimization framework for resource allocation to achieve the following gains: cooperative diversity (via relay selection), network coding gain (via bidirectional transmission mode selection), and multiuser diversity (via subcarrier assignment). We formulate the problem as a combinatorial optimization problem, which is NP-complete. To make it more tractable, we adopt a graph-based approach. We first establish the equivalence between the original problem and a maximum weighted clique problem in graph theory. A metaheuristic algorithm based on any colony optimization (ACO) is then employed to find the solution in polynomial time. Simulation results demonstrate that the proposed protocol together with the ACO algorithm significantly enhances the system total throughput.Comment: 27 pages, 8 figures, 2 table

    Out-of-Time-Order Correlation at a Quantum Phase Transition

    Full text link
    In this paper we numerically calculate the out-of-time-order correlation functions in the one-dimensional Bose-Hubbard model. Our study is motivated by the conjecture that a system with Lyapunov exponent saturating the upper bound 2π/β2\pi/\beta will have a holographic dual to a black hole at finite temperature. We further conjecture that for a many-body quantum system with a quantum phase transition, the Lyapunov exponent will have a peak in the quantum critical region where there exists an emergent conformal symmetry and is absent of well-defined quasi-particles. With the help of a relation between the R\'enyi entropy and the out-of-time-order correlation function, we argue that the out-of-time-order correlation function of the Bose-Hubbard model will also exhibit an exponential behavior at the scrambling time. By fitting the numerical results with an exponential function, we extract the Lyapunov exponents in the one-dimensional Bose-Hubbard model across the quantum critical regime at finite temperature. Our results on the Bose-Hubbard model support the conjecture. We also compute the butterfly velocity and propose how the echo type measurement of this correlator in the cold atom realizations of the Bose-Hubbard model without inverting the Hamiltonian.Comment: 7 pages, 6 figures, published versio

    Improving Variational Encoder-Decoders in Dialogue Generation

    Full text link
    Variational encoder-decoders (VEDs) have shown promising results in dialogue generation. However, the latent variable distributions are usually approximated by a much simpler model than the powerful RNN structure used for encoding and decoding, yielding the KL-vanishing problem and inconsistent training objective. In this paper, we separate the training step into two phases: The first phase learns to autoencode discrete texts into continuous embeddings, from which the second phase learns to generalize latent representations by reconstructing the encoded embedding. In this case, latent variables are sampled by transforming Gaussian noise through multi-layer perceptrons and are trained with a separate VED model, which has the potential of realizing a much more flexible distribution. We compare our model with current popular models and the experiment demonstrates substantial improvement in both metric-based and human evaluations.Comment: Accepted by AAAI201
    • …
    corecore