11,409 research outputs found
Machine Learning Topological Invariants with Neural Networks
In this Letter we supervisedly train neural networks to distinguish different
topological phases in the context of topological band insulators. After
training with Hamiltonians of one-dimensional insulators with chiral symmetry,
the neural network can predict their topological winding numbers with nearly
100% accuracy, even for Hamiltonians with larger winding numbers that are not
included in the training data. These results show a remarkable success that the
neural network can capture the global and nonlinear topological features of
quantum phases from local inputs. By opening up the neural network, we confirm
that the network does learn the discrete version of the winding number formula.
We also make a couple of remarks regarding the role of the symmetry and the
opposite effect of regularization techniques when applying machine learning to
physical systems.Comment: 6 pages, 4 figures and 1 table + 2 pages of supplemental materia
Show, Attend and Read: A Simple and Strong Baseline for Irregular Text Recognition
Recognizing irregular text in natural scene images is challenging due to the
large variance in text appearance, such as curvature, orientation and
distortion. Most existing approaches rely heavily on sophisticated model
designs and/or extra fine-grained annotations, which, to some extent, increase
the difficulty in algorithm implementation and data collection. In this work,
we propose an easy-to-implement strong baseline for irregular scene text
recognition, using off-the-shelf neural network components and only word-level
annotations. It is composed of a -layer ResNet, an LSTM-based
encoder-decoder framework and a 2-dimensional attention module. Despite its
simplicity, the proposed method is robust and achieves state-of-the-art
performance on both regular and irregular scene text recognition benchmarks.
Code is available at: https://tinyurl.com/ShowAttendReadComment: Accepted to Proc. AAAI Conference on Artificial Intelligence 201
Optimization Framework and Graph-Based Approach for Relay-Assisted Bidirectional OFDMA Cellular Networks
This paper considers a relay-assisted bidirectional cellular network where
the base station (BS) communicates with each mobile station (MS) using OFDMA
for both uplink and downlink. The goal is to improve the overall system
performance by exploring the full potential of the network in various
dimensions including user, subcarrier, relay, and bidirectional traffic. In
this work, we first introduce a novel three-time-slot time-division duplexing
(TDD) transmission protocol. This protocol unifies direct transmission, one-way
relaying and network-coded two-way relaying between the BS and each MS. Using
the proposed three-time-slot TDD protocol, we then propose an optimization
framework for resource allocation to achieve the following gains: cooperative
diversity (via relay selection), network coding gain (via bidirectional
transmission mode selection), and multiuser diversity (via subcarrier
assignment). We formulate the problem as a combinatorial optimization problem,
which is NP-complete. To make it more tractable, we adopt a graph-based
approach. We first establish the equivalence between the original problem and a
maximum weighted clique problem in graph theory. A metaheuristic algorithm
based on any colony optimization (ACO) is then employed to find the solution in
polynomial time. Simulation results demonstrate that the proposed protocol
together with the ACO algorithm significantly enhances the system total
throughput.Comment: 27 pages, 8 figures, 2 table
Out-of-Time-Order Correlation at a Quantum Phase Transition
In this paper we numerically calculate the out-of-time-order correlation
functions in the one-dimensional Bose-Hubbard model. Our study is motivated by
the conjecture that a system with Lyapunov exponent saturating the upper bound
will have a holographic dual to a black hole at finite
temperature. We further conjecture that for a many-body quantum system with a
quantum phase transition, the Lyapunov exponent will have a peak in the quantum
critical region where there exists an emergent conformal symmetry and is absent
of well-defined quasi-particles. With the help of a relation between the
R\'enyi entropy and the out-of-time-order correlation function, we argue that
the out-of-time-order correlation function of the Bose-Hubbard model will also
exhibit an exponential behavior at the scrambling time. By fitting the
numerical results with an exponential function, we extract the Lyapunov
exponents in the one-dimensional Bose-Hubbard model across the quantum critical
regime at finite temperature. Our results on the Bose-Hubbard model support the
conjecture. We also compute the butterfly velocity and propose how the echo
type measurement of this correlator in the cold atom realizations of the
Bose-Hubbard model without inverting the Hamiltonian.Comment: 7 pages, 6 figures, published versio
Improving Variational Encoder-Decoders in Dialogue Generation
Variational encoder-decoders (VEDs) have shown promising results in dialogue
generation. However, the latent variable distributions are usually approximated
by a much simpler model than the powerful RNN structure used for encoding and
decoding, yielding the KL-vanishing problem and inconsistent training
objective. In this paper, we separate the training step into two phases: The
first phase learns to autoencode discrete texts into continuous embeddings,
from which the second phase learns to generalize latent representations by
reconstructing the encoded embedding. In this case, latent variables are
sampled by transforming Gaussian noise through multi-layer perceptrons and are
trained with a separate VED model, which has the potential of realizing a much
more flexible distribution. We compare our model with current popular models
and the experiment demonstrates substantial improvement in both metric-based
and human evaluations.Comment: Accepted by AAAI201
- …