13 research outputs found

    Nonparametric Uncertainty Quantification for Single Deterministic Neural Network

    Full text link
    This paper proposes a fast and scalable method for uncertainty quantification of machine learning models' predictions. First, we show the principled way to measure the uncertainty of predictions for a classifier based on Nadaraya-Watson's nonparametric estimate of the conditional label distribution. Importantly, the proposed approach allows to disentangle explicitly aleatoric and epistemic uncertainties. The resulting method works directly in the feature space. However, one can apply it to any neural network by considering an embedding of the data induced by the network. We demonstrate the strong performance of the method in uncertainty estimation tasks on text classification problems and a variety of real-world image datasets, such as MNIST, SVHN, CIFAR-100 and several versions of ImageNet.Comment: NeurIPS 2022 pape

    Towards Computationally Feasible Deep Active Learning

    Full text link
    Active learning (AL) is a prominent technique for reducing the annotation effort required for training machine learning models. Deep learning offers a solution for several essential obstacles to deploying AL in practice but introduces many others. One of such problems is the excessive computational resources required to train an acquisition model and estimate its uncertainty on instances in the unlabeled pool. We propose two techniques that tackle this issue for text classification and tagging tasks, offering a substantial reduction of AL iteration duration and the computational overhead introduced by deep acquisition models in AL. We also demonstrate that our algorithm that leverages pseudo-labeling and distilled models overcomes one of the essential obstacles revealed previously in the literature. Namely, it was shown that due to differences between an acquisition model used to select instances during AL and a successor model trained on the labeled data, the benefits of AL can diminish. We show that our algorithm, despite using a smaller and faster acquisition model, is capable of training a more expressive successor model with higher performance.Comment: Accepted at NAACL-2022 Finding

    LM-Polygraph: Uncertainty Estimation for Language Models

    Full text link
    Recent advancements in the capabilities of large language models (LLMs) have paved the way for a myriad of groundbreaking applications in various fields. However, a significant challenge arises as these models often "hallucinate", i.e., fabricate facts without providing users an apparent means to discern the veracity of their statements. Uncertainty estimation (UE) methods are one path to safer, more responsible, and more effective use of LLMs. However, to date, research on UE methods for LLMs has been focused primarily on theoretical rather than engineering contributions. In this work, we tackle this issue by introducing LM-Polygraph, a framework with implementations of a battery of state-of-the-art UE methods for LLMs in text generation tasks, with unified program interfaces in Python. Additionally, it introduces an extendable benchmark for consistent evaluation of UE techniques by researchers, and a demo web application that enriches the standard chat dialog with confidence scores, empowering end-users to discern unreliable responses. LM-Polygraph is compatible with the most recent LLMs, including BLOOMz, LLaMA-2, ChatGPT, and GPT-4, and is designed to support future releases of similarly-styled LMs.Comment: Accepted at EMNLP-202

    M4: Multi-generator, Multi-domain, and Multi-lingual Black-Box Machine-Generated Text Detection

    Full text link
    Large language models (LLMs) have demonstrated remarkable capability to generate fluent responses to a wide variety of user queries, but this has also resulted in concerns regarding the potential misuse of such texts in journalism, educational, and academic context. In this work, we aim to develop automatic systems to identify machine-generated text and to detect potential misuse. We first introduce a large-scale benchmark M4, which is multi-generator, multi-domain, and multi-lingual corpus for machine-generated text detection. Using the dataset, we experiment with a number of methods and we show that it is challenging for detectors to generalize well on unseen examples if they are either from different domains or are generated by different large language models. In such cases, detectors tend to misclassify machine-generated text as human-written. These results show that the problem is far from solved and there is a lot of room for improvement. We believe that our dataset M4, which covers different generators, domains and languages, will enable future research towards more robust approaches for this pressing societal problem. The M4 dataset is available at https://github.com/mbzuai-nlp/M4.Comment: 11 page

    Word Sense Disambiguation for 158 Languages using Word Embeddings Only

    Full text link
    Disambiguation of word senses in context is easy for humans, but is a major challenge for automatic approaches. Sophisticated supervised and knowledge-based models were developed to solve this task. However, (i) the inherent Zipfian distribution of supervised training instances for a given word and/or (ii) the quality of linguistic knowledge representations motivate the development of completely unsupervised and knowledge-free approaches to word sense disambiguation (WSD). They are particularly useful for under-resourced languages which do not have any resources for building either supervised and/or knowledge-based models. In this paper, we present a method that takes as input a standard pre-trained word embedding model and induces a fully-fledged word sense inventory, which can be used for disambiguation in context. We use this method to induce a collection of sense inventories for 158 languages on the basis of the original pre-trained fastText word embeddings by Grave et al. (2018), enabling WSD in these languages. Models and system are available online.Comment: 10 pages, 5 figures, 4 tables, accepted at LREC 202

    Towards Text Processing System for Emergency Event Detection in the Arctic Zone

    No full text
    We present the ongoing work on text processing system for detection and analysis of events related to emergencies in the Arctic zone. The peculiarity of the task consists in data sparseness and scarceness of tools / language resources for processing such specific texts. The system performs focused crawling of documents related to emergencies in the Arctic region, text parsing including named entity recognition and geotagging, and indexing texts with their metadata for faceted search. The system aims at processing both English and Russian text messages and documents. We report the preliminary results of the experimental evaluation of the system components on Twitter data

    Active learning with deep pre-trained models for sequence tagging of clinical and biomedical texts

    No full text
    Active learning is a technique that helps to minimize the annotation budget required for the creation of a labeled dataset while maximizing the performance of a model trained on this dataset. It has been shown that active learning can be successfully applied to sequence tagging tasks of text processing in conjunction with deep learning models even when a limited amount of labeled data is available. Recent advances in transfer learning methods for natural language processing based on deep pre-trained models such as ELMo and BERT offer a much better ability to generalize on small annotated datasets compared to their shallow counterparts. The combination of deep pre-trained models and active learning leads to a powerful approach to dealing with annotation scarcity. In this work, we investigate the potential of this approach on clinical and biomedical data. The experimental evaluation shows that the combination of active learning and deep pre-trained models outperforms the standard methods of active learning. We also suggest a modification to a standard uncertainty sampling strategy and empirically show that it could be beneficial for annotation of very skewed datasets. Finally, we propose an annotation tool empowered with active learning and deep pre-trained models that could be used for entity annotation directly from Jupyter IDE

    Active learning with deep pre-trained models for sequence tagging of clinical and biomedical texts

    No full text
    Active learning is a technique that helps to minimize the annotation budget required for the creation of a labeled dataset while maximizing the performance of a model trained on this dataset. It has been shown that active learning can be successfully applied to sequence tagging tasks of text processing in conjunction with deep learning models even when a limited amount of labeled data is available. Recent advances in transfer learning methods for natural language processing based on deep pre-trained models such as ELMo and BERT offer a much better ability to generalize on small annotated datasets compared to their shallow counterparts. The combination of deep pre-trained models and active learning leads to a powerful approach to dealing with annotation scarcity. In this work, we investigate the potential of this approach on clinical and biomedical data. The experimental evaluation shows that the combination of active learning and deep pre-trained models outperforms the standard methods of active learning. We also suggest a modification to a standard uncertainty sampling strategy and empirically show that it could be beneficial for annotation of very skewed datasets. Finally, we propose an annotation tool empowered with active learning and deep pre-trained models that could be used for entity annotation directly from Jupyter IDE
    corecore