10 research outputs found

    Transmission of viral pathogens in a social network of university students: the eX-FLU study

    Get PDF
    Previous research on respiratory infection transmission among university students has primarily focused on influenza. In this study, we explore potential transmission events for multiple respiratory pathogens in a social contact network of university students. University students residing in on-campus housing (n = 590) were followed for the development of influenza-like illness for 10-weeks during the 2012–13 influenza season. A contact network was built using weekly self-reported contacts, class schedules, and housing information. We considered a transmission event to have occurred if students were positive for the same pathogen and had a network connection within a 14-day period. Transmitters were individuals who had onset date prior to their infected social contact. Throat and nasal samples were analysed for multiple viruses by RT-PCR. Five viruses were involved in 18 transmission events (influenza A, parainfluenza virus 3, rhinovirus, coronavirus NL63, respiratory syncytial virus). Transmitters had higher numbers of co-infections (67%). Identified transmission events had contacts reported in small classes (33%), dormitory common areas (22%) and dormitory rooms (17%). These results suggest that targeting person-to-person interactions, through measures such as isolation and quarantine, could reduce transmission of respiratory infections on campus

    Antibody potency, effector function, and combinations in protection and therapy for SARS-CoV-2 infection in vivo

    Get PDF
    SARS-CoV-2, the causative agent of COVID-19, has been responsible for over 42 million infections and 1 million deaths since its emergence in December 2019. There are few therapeutic options and no approved vaccines. Here, we examine the properties of highly potent human monoclonal antibodies (hu-mAbs) in a Syrian hamster model of SARS-CoV-2 and in a mouse-adapted model of SARS-CoV-2 infection (SARS-CoV-2 MA). Antibody combinations were effective for prevention and in therapy when administered early. However, in vitro antibody neutralization potency did not uniformly correlate with in vivo protection, and some hu-mAbs were more protective in combination in vivo. Analysis of antibody Fc regions revealed that binding to activating Fc receptors contributes to optimal protection against SARS-CoV-2 MA. The data indicate that intact effector function can affect hu-mAb protective activity and that in vivo testing is required to establish optimal hu-mAb combinations for COVID-19 prevention

    Elicitation of Potent Neutralizing Antibody Responses by Designed Protein Nanoparticle Vaccines for SARS-CoV-2

    Get PDF
    Walls et al. describe a potential nanoparticle vaccine for COVID-19, made of a self-assembling protein nanoparticle displaying the SARS-CoV-2 receptor-binding domain in a highly immunogenic array reminiscent of the natural virus. Their nanoparticle vaccine candidate elicits a diverse, potent, and protective antibody response, including neutralizing antibody titers 10-fold higher than the prefusion-stabilized spike ectodomain trimer

    Congenital Defects Or Adverse Developmental Effects In Vertebrate Wildlife: The Wildlife-Human Connection

    No full text

    BIBLIOGRAPHY-BIBLIOGRAPHIE

    No full text

    Dulaglutide and cardiovascular outcomes in type 2 diabetes (REWIND): a double-blind, randomised placebo-controlled trial

    No full text
    corecore