15 research outputs found

    A noninvasive analysis of urinary musculoskeletal collagen metabolism markers from rhesus monkeys subject to chronic hypergravity

    No full text
    A decrease in load-bearing activity, as experienced during spaceflight or immobilization, affects the musculoskeletal system in animals and humans, resulting in the loss of bone and connective tissue. It has been suggested that hypergravity (HG) can counteract the deleterious effects of microgravity-induced musculoskeletal resorption. However, little consensus information has been collected on the noninvasive measurement of collagen degradation products associated with enhanced load-bearing stress on the skeleton. The purpose of this study is to assess the urinary collagen metabolic profiles of rhesus monkeys (Macaca mulatta) during 1) 2 wk of basal 1 G (pre-HG), 2) 2 wk of HG (2 G), and 3) two periods of post-HG recovery (1 G). Urine was collected over a 24-h period from six individual rhesus monkeys. Hydroxyproline (Hyp) and collagen cross-links (hydroxylysylpyridinoline and lysylpyridinoline) were measured by reverse-phase HPLC. Urinary calcium, measured by atomic absorption, and creatinine were also assayed. The results indicate no changes in nonreducible cross-links and Hyp during HG. Collagen cross-link biomarker levels were significantly elevated during the 2nd wk of HG. Urinary calcium content was significantly lower during HG than during the 1-G control period, suggesting calcium retention by the body. We conclude that there is an adaptation of the nonhuman primate musculoskeletal system during hyperloading and that noninvasive measurements of musculoskeletal biomarkers can be used as indicators of collagen and mineral metabolism during HG and recovery in nonhuman primates

    Measurements of fiducial and differential cross sections for Higgs boson production in the diphoton decay channel at (Formula presented.) TeV with ATLAS

    No full text
    Abstract: Measurements of fiducial and differential cross sections are presented for Higgs boson production in proton-proton collisions at a centre-of-mass energy of (Formula presented.) TeV. The analysis is performed in the H → γγ decay channel using 20.3 fb−1 of data recorded by the ATLAS experiment at the CERN Large Hadron Collider. The signal is extracted using a fit to the diphoton invariant mass spectrum assuming that the width of the resonance is much smaller than the experimental resolution. The signal yields are corrected for the effects of detector inefficiency and resolution. The pp → H → γγ fiducial cross section is measured to be 43.2 ±9.4(stat.) − 2.9+ 3.2 (syst.) ±1.2(lumi)fb for a Higgs boson of mass 125.4GeV decaying to two isolated photons that have transverse momentum greater than 35% and 25% of the diphoton invariant mass and each with absolute pseudorapidity less than 2.37. Four additional fiducial cross sections and two cross-section limits are presented in phase space regions that test the theoretical modelling of different Higgs boson production mechanisms, or are sensitive to physics beyond the Standard Model. Differential cross sections are also presented, as a function of variables related to the diphoton kinematics and the jet activity produced in the Higgs boson events. The observed spectra are statistically limited but broadly in line with the theoretical expectations.[Figure not available: see fulltext.]

    Measurements of fiducial and differential cross sections for Higgs boson production in the diphoton decay channel at S=8 TeV with ATLAS

    No full text
    Abstract: Measurements of fiducial and differential cross sections are presented for Higgs boson production in proton-proton collisions at a centre-of-mass energy of (formula presented) TeV. The analysis is performed in the H → γγ decay channel using 20.3 fb−1 of data recorded by the ATLAS experiment at the CERN Large Hadron Collider. The signal is extracted using a fit to the diphoton invariant mass spectrum assuming that the width of the resonance is much smaller than the experimental resolution. The signal yields are corrected for the effects of detector inefficiency and resolution. The pp → H → γγ fiducial cross section is measured to be 43.2 ±9.4(stat.) − 2.9+ 3.2 (syst.) ±1.2(lumi)fb for a Higgs boson of mass 125.4GeV decaying to two isolated photons that have transverse momentum greater than 35% and 25% of the diphoton invariant mass and each with absolute pseudorapidity less than 2.37. Four additional fiducial cross sections and two cross-section limits are presented in phase space regions that test the theoretical modelling of different Higgs boson production mechanisms, or are sensitive to physics beyond the Standard Model. Differential cross sections are also presented, as a function of variables related to the diphoton kinematics and the jet activity produced in the Higgs boson events. The observed spectra are statistically limited but broadly in line with the theoretical expectations.[Figure not available: see fulltext.

    Search for supersymmetry in events with large missing transverse momentum, jets, and at least one tau lepton in 20 fb−1 of (fromula presented) proton-proton collision data with the ATLAS detector

    No full text
    A search for supersymmetry (SUSY) in events with large missing transverse momentum, jets, at least one hadronically decaying tau lepton and zero or one additional light leptons (electron/muon), has been performed using 20.3fb−1 of proton-proton collision data at (formula presented) recorded with the ATLAS detector at the Large Hadron Collider. No excess above the Standard Model background expectation is observed in the various signal regions and 95% confidence level upper limits on the visible cross section for new phenomena are set. The results of the analysis are interpreted in several SUSY scenarios, significantly extending previous limits obtained in the same final states. In the framework of minimal gauge-mediated SUSY breaking models, values of the SUSY breaking scale Λ below 63 TeV are excluded, independently of tan β. Exclusion limits are also derived for an mSUGRA/CMSSM model, in both the R-parity-conserving and R-parity-violating case. A further interpretation is presented in a framework of natural gauge mediation, in which the gluino is assumed to be the only light coloured sparticle and gluino masses below 1090 GeV are excluded

    Measurement of flow harmonics with multi-particle cumulants in Pb+Pb collisions at (Formula presented.) TeV with the ATLAS detector

    No full text
    ATLAS measurements of the azimuthal anisotropy in lead–lead collisions at (Formula presented.) TeV are shown using a dataset of approximately 7 (Formula presented.) collected at the LHC in 2010. The measurements are performed for charged particles with transverse momenta (Formula presented.) GeV and in the pseudorapidity range (Formula presented.). The anisotropy is characterized by the Fourier coefficients, (Formula presented.), of the charged-particle azimuthal angle distribution for (Formula presented.)–4. The Fourier coefficients are evaluated using multi-particle cumulants calculated with the generating function method. Results on the transverse momentum, pseudorapidity and centrality dependence of the (Formula presented.), is obtained from the two-, four-, six- and eight-particle cumulants while higher-order coefficients, (Formula presented.) and (Formula presented.), are determined with two- and four-particle cumulants. Flow harmonics (Formula presented.) measured with four-particle cumulants are significantly reduced compared to the measurement involving two-particle cumulants. A comparison to (Formula presented.) measurements obtained using different analysis methods and previously reported by the LHC experiments is also shown. Results of measurements of flow fluctuations evaluated with multi-particle cumulants are shown as a function of transverse momentum and the collision centrality. Models of the initial spatial geometry and its fluctuations fail to describe the flow fluctuations measurements

    Measurement of the Z/γ∗ boson transverse momentum distribution in pp collisions at √s = 7 TeV with the ATLAS detector

    No full text
    This paper describes a measurement of the Z/γ* boson transverse momentum spectrum using ATLAS proton-proton collision data at a centre-of-mass energy of √s = TeV at the LHC. The measurement is performed in the Z/γ* → e+e− and Z/γ* → μ+μ− channels, using data corresponding to an integrated luminosity of 4.7 fb−1. Normalized differential cross sections as a function of the Z/γ* boson transverse momentum are measured for transverse momenta up to 800 GeV. The measurement is performed inclusively for Z/γ* rapidities up to 2.4, as well as in three rapidity bins. The channel results are combined, compared to perturbative and resummed QCD calculations and used to constrain the parton shower parameters of Monte Carlo generators
    corecore