24 research outputs found
Solar Arrays for Low-Irradiance Low-Temperature and High-Radiation Environments
This is the Base Period final report DRAFT for the JPL task 'Solar Arrays for Low-Irradiance Low-Temperature and High-Radiation Environments', under Task Plan 77-16518 TA # 21, for NASA's Extreme Environments Solar Power (EESP) project. This report covers the Base period of performance, 7/18/2016 through 5/2/2017.The goal of this project is to develop an ultra-high efficiency lightweight scalable solar array technology for low irradiance, low temperature and high-radiation (LILT/Rad) environments. The benefit this technology will bring to flight systems is a greater than 20 reduction in solar array surface area, and a six-fold reduction in solar array mass and volume. The EESP project objectives are summarized in the 'NRA Goal' column of Table 1. Throughout this report, low irradiance low temperature (LILT) refers to 5AU -125 C test conditions; beginning of life (BOL) refers to the cell state prior to radiation exposure; and end of life (EOL) refers to the test article condition after exposure to a radiation dose of 4e15 1MeV e(-)/cm(exp 2)
Transformational Solar Array Option I Final Report
This report summarizes the work performed under NASA contract NNC16CA19C from May 2, 2017 through April 2, 2018. This work is directed toward meeting the goals of the associated NASA NRA and, of course, the requirements of the contract. In brief, the goals are: (1) Over 47% beginning of life cell efficiency at 5 AU and -125 C (2) Over 32% end of life efficiency at the blanket level at 50 W m-2, -125 C and 4E15 1 MeV e cm-2 (3) Over 8 W kg-1 at EOL for the entire array including structure, deployment, and pointing mechanisms using beginning of life performance. (4) A stowed packaging density of greater than 66 kW m-3 (5) An ability to survive launch and numerous deploy retract cycles without degradation (6) An output higher than 300 V (7) An ability to operate in a plasma generated by xenon thrusters, typically 1E8 cm-3 ions with an average energy of 2 eV (8) A design compatible with electrostatic and magnetic cleanliness (9) Record breaking inverted metamorphic (IMM) 6 junction solar cells (10) IMM solar cells that have no anomalous flat spot behavior at low irradiance and low temperature (11) A mock-up production line for the low-cost manufacture of spacecraft blanket arrays. The Option I phase of the project continued efforts, started in the base-phase, to eliminate or reduce to very low levels the flat spots that reduce power to an unacceptable value in a significant percentage of cells and to reduce outgassing contamination of the concentrators to acceptable levels. Option I adds tasks to increase the efficiency of IMM cells from those produced in the Base Phase, to eliminate delamination of the coatings that were present in previous versions of the concentrator mirrors, to evaluate pressure sensitive adhesive as a method of fixing solar cell assemblies to blankets, to design a magnetically clean brake for ROSA, to test the robustness of a sample blanket in deploy and retract, to test for the adequate performance of a blanket in vibration and thermal environments, and to define the capital equipment needed to optimize production of the Transformational Array. 5 Work for this Final Report showed that the greatest likely improvement in the solar cells would be by emphasizing the effort for the IMM4 solar cells and stopping work on other IMM cells. For this phase, the solar cell work was primarily on the IMM4 cells with little work on IMM5 and none on IMM6 cells
Point-Focus Concentration Compact Telescoping Array: EESP Option 1 Phase Final Report for Public Release
Orbital ATK, in partnership with Mark ONeill LLC (MOLLC) and SolAero Technologies Corp., has developed a novel solar array platform, PFC-CTA, which provides a significant advance in performance and cost reduction compared to all currently available space solar systems. PFC refers to the Point Focus Concentration of light provided by MOLLCs thin, flat Fresnel optics. These lenses focus light to a point of approximately 100 times the intensity of the ambient light, onto a solar cell of approximately 1/25th the size of the lens. CTA stands for Compact Telescoping Array1, which is the solar array blanket structural platform originally devised by NASA and currently being advanced by Orbital ATK and partners under NASA and AFRL funding to a projected TRL 5+ by late-2018. The NASA Game Changing Development Extreme Environment Solar Power (EESP) Option 1 Phase study has enabled Orbital ATK to generate and refine component designs, perform component level and system performance analyses, and test prototype hardware of the key elements of PFC-CTA, and increased the TRL of PFC-specific technology elements to TRL ~5. Key performance metrics currently projected are as follows: Scalability from 300 kW per wing (AM0); Specific Power > 250 W/kg (BoL, AM0); Stowage Efficiency > 60 kW/m3; 5:1 margin on pointing tolerance vs. capability; >50% launched cost savings; Wide range of operability between Venus and Saturn by active and/or passive thermal management
Transformational Solar Array Final Report
We have made outstanding progress in the Base Phase towards achieving the final NASA Research Announcement (NRA) goals. Progress is better than anticipated due to the lighter than predicted mass of the IMM solar cells. We look forward to further improvements in the IMM cell performance during Option I and Option II; so, we have confidence that the first four items listed in the table will improve to better than the NRA goals. The computation of the end of life blanket efficiency is uncertain because we have extrapolated the radiation damage from room temperature measurements. The last three items listed in the Table were not intended to be accomplished during the Base Phase; they will be achieved during Option I and Option II
Space Solar Cell Research and Development Projects at Emcore Photovoltaics
The GaInP2/InGaAs/Ge triple junction device lattice matched to germanium has achieved the highest power conversion efficiency and the most commercial success for space applications [1]. What are the practical performance limits of this technology? In this paper we will describe what we consider to be the practical performance limits of the lattice matched GaInP2/InGaAs/Ge triple junction cell. In addition, we discuss the options for next generation space cell performance
Advanced Development of Space Photovoltaic Concentrators Using Robust Lenses, Multi-Junction Cells, and Graphene Radiators
At the past three PVSCs, our team has presented recent advances in our space photovoltaic concentrator technology. In the past year, under multiple NASA-funded research and technology development programs, our team has made much additional progress in the advanced development of space photovoltaic concentrators. New robust Fresnel lenses, new high-efficiency multi-junction cells, and new graphene radiators have been developed. The paper will present the latest advances in this technology
Development of a high efficiency mechanically stacked multi-junction solar cell
An affinity for high performance solar cells in the space market, as well as the development of new engineered substrate technology, has warranted a re-consideration of mechanically stacked solar cell technologies. Mechanically stacked approaches result in a wider materials and interconnectivity design space compared to monolithic approaches. We are investigating the Smart-cut technology to produce InP/Si engineered substrates. Successful transfer of InP films to a silicon substrate has been demonstrated, and the resulting structure is mechanically stable after MOCVD growth. The electrical resistivity of the bonded interface is low, despite the presence of a very thin interfacial oxide. Work continues in regard to producing an epi-ready surface for the subsequent growth of high quality MOCVD layers. Tandem cell interconnectivity approaches are being investigated which can result in minimal parasitic loss and are also simple to process. Bottom tandem prototype cells have been fabricated on InP, with encouraging results. New AR coatings have also been designed to improve the optical coupling to these extremely wide-band solar cells
Patients with Complex Chronic Diseases: Perspectives on Supporting Self-Management
A Complex Chronic Disease (CCD) is a condition involving multiple morbidities that requires the attention of multiple health care providers or facilities and possibly community (home)-based care. A patient with CCD presents to the health care system with unique needs, disabilities, or functional limitations. The literature on how to best support self-management efforts in those with CCD is lacking. With this paper, the authors present the case of an individual with diabetes and end-stage renal disease who is having difficulty with self-management. The case is discussed in terms of intervention effectiveness in the areas of prevention, addiction, and self-management of single diseases. Implications for research are discussed
ECLAIRE: Effects of Climate Change on Air Pollution Impacts and Response Strategies for European Ecosystems. Project final report
The central goal of ECLAIRE is to assess how climate change will alter the extent to which air pollutants threaten terrestrial ecosystems. Particular attention has been given to nitrogen compounds, especially nitrogen oxides (NOx) and ammonia (NH3), as well as Biogenic Volatile Organic Compounds (BVOCs) in relation to tropospheric ozone (O3) formation, including their interactions with aerosol components. ECLAIRE has combined a broad program of field and laboratory experimentation and modelling of pollution fluxes and ecosystem impacts, advancing both mechanistic understanding and providing support to European policy makers.
The central finding of ECLAIRE is that future climate change is expected to worsen the threat of air pollutants on Europe鈥檚 ecosystems.
Firstly, climate warming is expected to increase the emissions of many trace gases, such as agricultural NH3, the soil component of NOx emissions and key BVOCs. Experimental data and numerical models show how these effects will tend to increase atmospheric N deposition in future. By contrast, the net effect on tropospheric O3 is less clear. This is because parallel increases in atmospheric CO2 concentrations will offset the temperature-driven increase for some BVOCs, such as isoprene. By contrast, there is currently insufficient evidence to be confident that CO2 will offset anticipated climate increases in monoterpene emissions.
Secondly, climate warming is found to be likely to increase the vulnerability of ecosystems towards air pollutant exposure or atmospheric deposition. Such effects may occur as a consequence of combined perturbation, as well as through specific interactions, such as between drought, O3, N and aerosol exposure.
These combined effects of climate change are expected to offset part of the benefit of current emissions control policies. Unless decisive mitigation actions are taken, it is anticipated that ongoing climate warming will increase agricultural and other biogenic emissions, posing a challenge for national emissions ceilings and air quality objectives related to nitrogen and ozone pollution. The O3 effects will be further worsened if progress is not made to curb increases in methane (CH4) emissions in the northern hemisphere.
Other key findings of ECLAIRE are that: 1) N deposition and O3 have adverse synergistic effects. Exposure to ambient O3 concentrations was shown to reduce the Nitrogen Use Efficiency of plants, both decreasing agricultural production and posing an increased risk of other forms of nitrogen pollution, such as nitrate leaching (NO3-) and the greenhouse gas nitrous oxide (N2O); 2) within-canopy dynamics for volatile aerosol can increase dry deposition and shorten atmospheric lifetimes; 3) ambient aerosol levels reduce the ability of plants to conserve water under drought conditions; 4) low-resolution mapping studies tend to underestimate the extent of local critical loads exceedance; 5) new dose-response functions can be used to improve the assessment of costs, including estimation of the value of damage due to air pollution effects on ecosystems, 6) scenarios can be constructed that combine technical mitigation measures with dietary change options (reducing livestock products in food down to recommended levels for health criteria), with the balance between the two strategies being a matter for future societal discussion. ECLAIRE has supported the revision process for the National Emissions Ceilings Directive and will continue to deliver scientific underpinning into the future for the UNECE Convention on Long-range Transboundary Air Pollution
ECLAIRE third periodic report
The 脡CLAIRE project (Effects of Climate Change on Air Pollution Impacts and Response Strategies for European Ecosystems) is a four year (2011-2015) project funded by the EU's Seventh Framework Programme for Research and Technological Development (FP7)