2 research outputs found

    Effect of stocker management program on beef cattle skeletal muscle growth characteristics, satellite cell activity, and paracrine signaling impact on preadipocyte differentiation

    Get PDF
    The objective of this study was to determine the effect of different stocker management programs on skeletal muscle development and growth characteristics, satellite cell (SC) activity in growing-finishing beef cattle as well as the effects of SC-conditioned media on preadipocyte gene expression and differentiation. Fall-weaned Angus steers (n = 76; 258 ± 28 kg) were randomly assigned to 1 of 4 stocker production systems: 1) grazing dormant native range (NR) supplemented with a 40% CP cottonseed meal-based supplement (1.02 kg ∙ steer–1 ∙ d–1) followed by long-season summer grazing (CON, 0.46 kg/d); 2) grazing dormant NR supplemented with a ground corn and soybean meal-based supplement fed at 1% of BW followed by short-season summer grazing (CORN, 0.61 kg/d); 3) grazing winter wheat pasture (WP) at high stocking density (3.21 steers/ha) to achieve a moderate rate of gain (LGWP, 0.83 kg/d); and 4) grazing winter WP at low stocking density (0.99 steers/ha) to achieve a high rate of gain (HGWP, 1.29 kg/d). At the end of the stocker (intermediate harvest, IH) and finishing (final harvest, FH) phases, 4 steers / treatment were harvested and longissimus muscles (LM) sampled for cryohistological immunofluorescence analysis and SC culture assays. At IH, WP steers had greater LM fiber cross-sectional area than NR steers; however, at FH, the opposite was observed (p \u3c 0.0001). At IH, CORN steers had the lowest Myf-5+:Pax7+ SC density (p = 0.020), while LGWP steers had the most Pax7+ SC (p = 0.043). At FH, CON steers had the highest LM capillary density (p = 0.003) and their cultured SC differentiated more readily than all other treatments (p = 0.017). At FH, Pax7 mRNA was more abundant in 14 d-old SC cultures from HGWP cattle (p = 0.03). Preadipocytes exposed to culture media from proliferating SC cultures from WP cattle isolated at FH had more PPARγ (p = 0.037) and less FABP4 (p = 0.030) mRNA expression compared with NR cattle. These data suggest that different stocker management strategies can impact skeletal muscle growth, SC function, and potentially impact marbling development in growing-finishing beef cattle

    Yeast Culture Supplementation Effects on Systemic and Polymorphonuclear Leukocytes’ mRNA Biomarkers of Inflammation and Liver Function in Peripartal Dairy Cows

    No full text
    This study evaluated the effects of feeding a commercial yeast culture on blood biomarkers and polymorphonuclear leukocyte (PMNL) gene expression in dairy cows during the transition period until 50 d postpartum. Forty Holstein dairy cows were used in a randomized complete block design from −30 to 50 d. At −30 d, cows were assigned to a basal diet plus 114 g/d of top-dressed ground corn (control; n = 20) or 100 g/d of ground corn and 14 g/d of a yeast culture product (YC; n = 20). Blood samples were collected at various time points from −30 to 30 DIM to evaluate blood biomarkers and PMNL gene expression related to inflammation, liver function, and immune response. Liver function biomarkers, gamma-glutamyl transferase (GGT) and albumin were greater and lower, respectively, in YC cows in comparison to control. However, these biomarkers remained within physiological levels, indicating an active inflammatory process. Genes in PMNL expression related to inflammation (NFKB1, TNFA, TRAF6), anti-inflammation (IL10), and cell membrane receptors (SELL) were upregulated in the YC group in comparison to control. These results suggest that YC could stimulate a more active inflammatory response with signs of a resolution of inflammation in transition cows
    corecore