22 research outputs found
NH-SCR over V-W/TiO Investigated by Operando X-ray Absorption and Emission Spectroscopy
V–W/TiO-based catalysts, which are used for the removal of NO from the exhaust of diesel engines and stationary sources via selective catalytic reduction with NH (NH-SCR), were studied by operando X-ray absorption spectroscopy (XAS) and emerging photon-in/photon-out techniques. In order to minimize the influence of highly X-ray absorbing tungsten and the fluorescence of titanium, we used a high-energy-resolution fluorescence setup that is able to separate efficiently the V Kβ emission lines and additionally allows to record valence-to-core (vtc) X-ray emission lines. High-energy resolution fluorescence-detected XAS (HERFD-XAS) and vtc X-ray emission spectroscopy (vtc-XES) proved to be the only way to perform an operando V K edge X-ray spectroscopic study on industrially relevant V–W/TiO catalysts so far. The V–W/TiO and V/TiO samples synthesized by incipient wetness impregnation and grafting exhibited high activity toward NH-SCR. Raman spectroscopy showed that they mainly contained highly dispersed, isolated, and polymeric V-oxo species. HERFD-XAS and XES identified redox cycling of vanadium species between V and V. With respect to most of the potential NH adsorption complexes, density functional theory calculations further showed that vtc-XES is more limited than surface-sensitive techniques such as infrared spectroscopy; hence, a combination of X-ray techniques with IR or similar spectroscopies is required to unequivocally identify the mechanism of NH-SCR over vanadia-based catalysts
Acenaphthenoannulation Induced by the Dual Lewis Acidity of Alumina
We have discovered a dual (i. e., soft and hard) Lewis acidity of alumina that enables rapid one-pot π-extension through the activation of terminal alkynes followed by C−F activation. The tandem reaction introduces an acenaphthene fragment – an essential moiety of geodesic polyarenes. This reaction provides quick access to elusive non-alternant polyarenes such as π-extended buckybowls and helicenes through three-point annulation of the 1-(2-ethynyl-6-fluorophenyl)naphthalene moiety. The versatility of the developed method was demonstrated by the synthesis of unprecedented structural fragments of elusive geodesic graphene nanoribbons
Some New Reactions and Properties of Xanthane Hydride (5-Amino-1,2,4-dithiazole-3-thione)
Aminomethylation of xanthane hydride (5-amino-1,2,4-dithiazole-3-thione) with the RNH2–HCHO system has resulted in the formation of the derivatives of new heterocyclic system (3,7-dihydro-5H-[1,2,4]-dithiazolo[4,3-a][1,3,5]triazine) in low yields. The reaction of xanthane hydride with dicyandiamide has led to thioammeline [4,6-diamino-1,3,5-triazine-2(5Н)-thione]. Some practically important properties of xanthane hydride and its derivatives have been investigated. Xanthane hydride has efficiently exhibited carbon steel corrosion in neutral aqueous media. The prepared compounds have not exhibited growth-regulating or antidote activity to herbicide 2,4-D