69 research outputs found
A Comparison of MERRA and NARR Reanalysis Datasets with the DOE ARM SGP Continuous Forcing data
In this study, the atmospheric state, precipitation, cloud fraction, and radiative fluxes from Modern Era Retrospective-analysis for Research and Applications (MERRA) and North American Regional Reanalysis (NARR) are collected and compared with the Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) continuous forcing during the period 1999-2001. For the atmospheric state, the three datasets have excellent agreement for the horizontal wind components and air temperature. NARR and ARM have generally good agreement for humidity, except for several biases in the PBL and in the upper troposphere. MERRA, on the other hand, suffers from a year-round negative bias in humidity except for the month of June. For the vertical pressure velocity, significant differences exist with the largest biases occurring during the spring upwelling and summer downwelling periods. Although NARR and MERRA share many resemblances to each other, ARM outperforms these reanalyses in terms of correlation with cloud fraction. Because the ARM forcing is constrained by observed precipitation that gives the adequate mass, heat, and moisture budgets, much of the precipitation (specifically during the late spring/early summer) is caused by smaller-scale forcing that is not captured by the reanalyses. Both NARR and MERRA capture the seasonal variation of CF observed by ARM radar-lidar and GOES with high correlations (0.92-0.78), but having negative biases of 14% and 3%, respectively. Compared to the ARM observations, MERRA shows a better agreement for both SW and LW fluxes except for LW-down (due to a negative bias in water vapor), NARR has significant positive bias for SW-down and negative bias for LW-down under clear- and all-sky conditions . The NARR biases result from a combination of too few clouds and a lack of sufficient extinction by aerosols and water vapor in the atmospheric column. The results presented here represent only one location for a limited time period, and more comparisons at different locations and longer time period are needed
ARM/GCSS/SPARC TWP-ICE CRM Intercomparison Study
Specifications are provided for running a cloud-resolving model (CRM) and submitting results in a standardized format for inclusion in a n intercomparison study and archiving for public access. The simulated case study is based on measurements obtained during the 2006 Tropical Warm Pool - International Cloud Experiment (TWP-ICE) led by the U. S. department of Energy Atmospheric Radiation Measurement (ARM) program. The modeling intercomparison study is based on objectives developed in concert with the Stratospheric Processes And their Role in Climate (SPARC) program and the GEWEX cloud system study (GCSS) program. The Global Energy and Water Cycle Experiment (GEWEX) is a core project of the World Climate Research PRogramme (WCRP)
Diagnosing the Ice Crystal Enhancement Factor in the Tropics
Recent modeling studies have revealed that ice crystal number concentration is one of the dominant factors in the effect of clouds on radiation. Since the ice crystal enhancement factor and ice nuclei concentration determine the concentration, they are both important in quantifying the contribution of increased ice nuclei to global warming. In this study, long-term cloud-resolving model (CRM) simulations are compared with field observations to estimate the ice crystal enhancement factor in tropical and midlatitudinal clouds, respectively. It is found that the factor in tropical clouds is ~10 3-104 times larger than that of mid-latitudinal ones, which makes physical sense because entrainment and detrainment in the Tropics are much stronger than in middle latitudes. The effect of entrainment/detrainment on the enhancement factor, especially in tropical clouds, suggests that cloud microphysical parameterizations should be coupled with subgrid turbulence parameterizations within CRMs to obtain a more accurate depiction of cloud-radiative forcing
A Contribution by Ice Nuclei to Global Warming
Ice nuclei (IN) significantly affect clouds via supercooled droplets, that in turn modulate atmospheric radiation and thus climate change. Since the IN effect is relatively strong in stratiform clouds but weak in convective ones, the overall effect depends on the ratio of stratiform to convective cloud amount. In this paper, 10 years of TRMM (Tropical Rainfall Measuring Mission) satellite data are analyzed to confirm that stratiform precipitation fraction increases with increasing latitude, which implies that the IN effect is stronger at higher latitudes. To quantitatively evaluate the IN effect versus latitude, large-scale forcing data from ten field campaigns are used to drive a CRM (cloud-resolving model) to generate longterm cloud simulations. As revealed in the simulations, the increase in the net downward radiative flux at the TOA (top of the atmosphere) from doubling the current IN concentrations is larger at higher latitude, which is attributed to the meridional tendency in the stratiform precipitation fraction. Surface warming from doubling the IN concentrations, based on the radiative balance of the globe, is compared with that from anthropogenic COZ . It is found that the former effect is stronger than the latter in middle and high latitudes but not in the Tropics. With regard to the impact of IN on global warming, there are two factors to consider: the radiative effect from increasing the IN concentration and the increase in IN concentration itself. The former relies on cloud ensembles and thus varies mainly with latitude. In contrast, the latter relies on IN sources (e.g., the land surface distribution) and thus varies not only with latitude but also longitude. Global desertification and industrialization provide clues on the geographic variation of the increase in IN concentration since pre-industrial times. Thus, their effect on global warming can be inferred and then be compared with observations. A general match in geographic and seasonal variations between the inferred and observed warming suggests that IN may have contributed positively to global warming over the past decades, especially in middle and high latitudes
Heterogeneity in Warm-Season Land-Atmosphere Coupling over the U.S. Southern Great Plains
Heterogeneity in warm-season (May-August) land-atmosphere (LA) coupling is quantified with the long-time, multiple-station measurements from the U.S. Department of Energy Atmospheric Radiation Measurement (ARM) program and the moderate-resolution imaging spectroradiometer (MODIS) satellite remote sensing at the Southern Great Plains (SGP). We examine the coupling strength at 7 additional locations with the same surface type (i.e., pasture/grassland) as the ARM SGP central facility (CF). To simultaneously consider multiple factors and consistently quantify their relative contributions, we apply a multiple linear regression method to correlate the surface evaporative fraction (EF) with near-surface soil moisture (SM) and leaf area index (LAI). The observations show moderate to weak terrestrial segment LA coupling with large heterogeneity across the ARM SGP domain in warm-season. Large spatial variabilities in the contributions from SM and LAI to the EF changes are also found. The coupling heterogeneities appear to be associated with differences in land use, anthropogenic activities, rooting depth, and soil type at different stations. Therefore, the complex LA interactions at the SGP cannot be well represented by those at the CF/E13 based on the metrics applied here. Overall, the LAI exerts more influence on the EF than does the SM due to its overwhelming impacts on the latent heat flux. This study complements previous studies based on measurements only from the CF and has important implications for modeling LA coupling in weather and climate models. The multiple linear regression provides a more comprehensive measure of the integrated impacts on LA coupling from several different factors
Evaluating Clouds in Long-Term Cloud-Resolving Model Simulations with Observational Data
Two 20-day, continental midlatitude cases are simulated with a three-dimensional (3D) cloud-resolving model (CRM) and compared to Atmospheric Radiation Measurement (ARM) data. This evaluation of long-term cloud-resolving model simulations focuses on the evaluation of clouds and surface fluxes. All numerical experiments, as compared to observations, simulate surface precipitation well but over-predict clouds, especially in the upper troposphere. The sensitivity of cloud properties to dimensionality and other factors is studied to isolate the origins of the over prediction of clouds. Due to the difference in buoyancy damping between 2D and 3D models, surface precipitation fluctuates rapidly with time, and spurious dehumidification occurs near the tropopause in the 2D CRM. Surface fluxes from a land data assimilation system are compared with ARM observations. They are used in place of the ARM surface fluxes to test the sensitivity of simulated clouds to surface fluxes. Summertime simulations show that surface fluxes from the assimilation system bring about a better simulation of diurnal cloud variation in the lower troposphere
Investigation of the first and second aerosol indirect effects using data from the May 2003 Intensive Operational Period at the Southern Great Plains
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/95668/1/jgrd12974.pd
Large-Scale Vertical Velocity, Diabatic Heating and Drying Profiles Associated with Seasonal and Diurnal Variations of Convective Systems Observed in the GoAmazon2014/5 Experiment
This study describes the characteristics of large-scale vertical velocity,
apparent heating source (Q1) and apparent moisture sink
(Q2) profiles associated with seasonal and diurnal variations
of convective systems observed during the two intensive operational periods
(IOPs) that were conducted from 15 February to 26 March 2014 (wet season) and
from 1 September to 10 October 2014 (dry season) near Manaus, Brazil, during
the Green Ocean Amazon (GoAmazon2014/5) experiment. The derived large-scale
fields have large diurnal variations according to convective activity in the
GoAmazon region and the morning profiles show distinct differences between
the dry and wet seasons. In the wet season, propagating convective systems
originating far from the GoAmazon region are often seen in the early morning,
while in the dry season they are rarely observed. Afternoon convective
systems due to solar heating are frequently seen in both seasons.
Accordingly, in the morning, there is strong upward motion and associated
heating and drying throughout the entire troposphere in the wet season, which
is limited to lower levels in the dry season. In the afternoon, both seasons\ud
exhibit weak heating and strong moistening in the boundary layer related to
the vertical convergence of eddy fluxes. A set of case studies of three
typical types of convective systems occurring in Amazonia â i.e.,
locally occurring systems, coastal-occurring systems and basin-occurring
systems â is also conducted to investigate the variability of the
large-scale environment with different types of convective systems
Aerosols in the E3SM Version 1: New Developments and Their Impacts on Radiative Forcing
The new Energy Exascale Earth System Model Version 1 (E3SMv1) developed for the U.S. Department of Energy has significant new treatments of aerosols and lightâ absorbing snow impurities as well as their interactions with clouds and radiation. This study describes seven sets of new aerosolâ related treatments (involving emissions, new particle formation, aerosol transport, wet scavenging and resuspension, and snow radiative transfer) and examines how they affect global aerosols and radiative forcing in E3SMv1. Altogether, they give a reduced total aerosol radiative forcing (â 1.6 W/m2) and sensitivity in cloud liquid water to aerosols, but an increased sensitivity in cloud droplet size to aerosols. A new approach for H2SO4 production and loss largely reduces a low bias in small particles concentrations and leads to substantial increases in cloud condensation nuclei concentrations and cloud radiative cooling. Emitting secondary organic aerosol precursor gases from elevated sources increases the column burden of secondary organic aerosol, contributing substantially to global clearâ sky aerosol radiative cooling (â 0.15 out of â 0.5 W/m2). A new treatment of aerosol resuspension from evaporating precipitation, developed to remedy two shortcomings of the original treatment, produces a modest reduction in aerosols and cloud droplets; its impact depends strongly on the model physics and is much stronger in E3SM Version 0. New treatments of the mixing state and optical properties of snow impurities and snow grains introduce a positive presentâ day shortwave radiative forcing (0.26 W/m2), but changes in aerosol transport and wet removal processes also affect the concentration and radiative forcing of lightâ absorbing impurities in snow/ice.Plain Language SummaryAerosol and aerosolâ cloud interactions continue to be a major uncertainty in Earth system models, impeding their ability to reproduce the observed historical warming and to project changes in global climate and water cycle. The U.S. DOE Energy Exascale Earth System Model version 1 (E3SMv1), a stateâ ofâ theâ science Earth system model, was developed to use exascale computing to address the grand challenge of actionable predictions of variability and change in the Earth system critical to the energy sector. It has been publicly released with new treatments in many aspects, including substantial modifications to the physical treatments of aerosols in the atmosphere and lightâ absorbing impurities in snow/ice, aimed at reducing some known biases or correcting model deficiencies in representing aerosols, their life cycle, and their impacts in various components of the Earth system. Compared to its predecessors (without the new treatments) and observations, E3SMv1 shows improvements in characterizing global distributions of aerosols and their radiative effects. We conduct sensitivity experiments to understand the impact of individual changes and provide guidance for future development of E3SM and other Earth system models.Key PointsA description and assessment of new aerosol treatments in the Energy Exascale Earth System Model Version 1 (E3SMv1) is providedContributions to the total aerosolâ related radiative forcing by individual new treatments and different processes are quantifiedSome of the new treatments are found to depend on model physics and require further improvement for E3SM or other Earth system modelsPeer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/153241/1/jame21034-sup-0001-Figure_SI-S01.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/153241/2/jame21034.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/153241/3/jame21034_am.pd
- âŚ