13 research outputs found

    A Test Case Generation Method for Workflow Systems Based on I/O_WF_Net

    Get PDF
    At present, the testing of the workflow system is mainly based on manual testing, and the functions of only some tools are relatively simple. The design of test cases mainly depends on the experience of testers, which makes the lack of test coverage. In this paper, a test case generation method based on the I/O_WF_Net model is proposed. A test case generation algorithm that satisfies the process branch coverage criterion is designed, which solves the problem of automatic test case generation for workflow systems. The algorithm divides the model according to "split-merge pairs" to generate a decomposition tree of the model, and then traverses the tree to generate test cases. A workflow system modelling and test case generation tool are designed and implemented, and an actual workflow system is used as the experimental object to verify the effectiveness of the method

    ultramicroscopy Water distributions of hydrated biological specimens by valence electron energy loss spectroscopy

    No full text
    A technique has been developed for measuring the water distribution in thin frozen hydrated biological specimens by means of electron energy loss spectroscopy (EELS). The method depends on the quantification of subtle changes in the valence electron excitation spectrum as a function of composition. It involves determining the single-scattering intensities, calculating oscillator strengths and applying a multiple-least-squares fitting procedure to reference spectra for water and the organic constituents. The direct EELS approach has an important advantage over other indirect methods that are based on X-ray generation or elastic scattering measurements since these are applied to freeze-dried specimens where differential shrinkage between compartments may produce errors. Precision and accuracy of the EELS method have been tested on cryosectioned solutions of bovine serum albumin; data have also been obtained from cryosections of rapidly frozen erythrocytes. Results suggest that a precision of better than +5% (s.d.) is attainable from a single measurement and the accuracy may be as high as +2% if repeated measurements are made. The lateral spatial resolution of the water determinations is limited by radiation damage to approximately 100 nm which is of the same order as the specimen thickness

    A Test Case Generation Method for Workflow Systems Based on I/O_WF_Net

    Get PDF
    At present, the testing of the workflow system is mainly based on manual testing, and the functions of only some tools are relatively simple. The design of test cases mainly depends on the experience of testers, which makes the lack of test coverage. In this paper, a test case generation method based on the I/O_WF_Net model is proposed. A test case generation algorithm that satisfies the process branch coverage criterion is designed, which solves the problem of automatic test case generation for workflow systems. The algorithm divides the model according to "split-merge pairs" to generate a decomposition tree of the model, and then traverses the tree to generate test cases. A workflow system modelling and test case generation tool are designed and implemented, and an actual workflow system is used as the experimental object to verify the effectiveness of the method

    Secrecy Capacity Enhancement in Active IRS-Assisted UAV Communication System

    No full text
    As a new technology for reconstructing communication environments, intelligent reflecting surfaces (IRSs) can be applied to UAV communication systems. However, some challenges exist in IRS-assisted UAV communication system design, such as physical layer security issues, IRS design, and power consumption issues owing to the limitation of the hardware. Therefore, a secrecy capacity optimization scheme for an active IRS-assisted unmanned aerial vehicle (UAV) communication system is proposed to solve multi-user security issues. In particular, controllable power amplifiers are integrated into reflecting units to solve the problem of blocked links, and the UAV can dynamically select the served user according to the channel quality. In order to maximize the system average achievable secrecy capacity and ensure the power constraints of the UAV and active IRS, user scheduling, UAV trajectory, beamforming vector, and reflection matrix are jointly optimized, and the block coordinate descent (BCD) algorithm is applied to solve this non-convex problem. Simulation results show that the active IRS-assisted UAV communication scheme can significantly weaken the “multiplicative fading” effect and enhance the system secrecy capacity by 55.4% and 11.9% compared with the schemes with passive IRS and without optimal trajectory, respectively

    Filtering for Discrete-Time Switched Fuzzy Systems With Quantization

    No full text

    Networked Fault Detection for Markov Jump Nonlinear Systems

    No full text

    Establishment of a new representative model of human ovarian cancer in mice

    No full text
    Abstract Background Intraperitoneal (i.p.) models that accurately mimic the feature behavior of human ovarian cancer are required to investigate the pathology and therapeutics of the disease. However, established i.p. models which are well-characterized and reliable are few. The purposes of this study are to establish a representative mice i.p. model of the disease and to analyze the consequent pathology. Methods Fresh tumor cells fiom the ascites of patient were injected into female NOD/SCID mice intraperitoneally. Histology, Cytogenetic, immunohistochemistry,tumor markers of CA125,AFP, CA-199 and CEA were used to analyze the model. Results The mice developed marked abdominal distention within 6 months after inoculated with tumor cells from a patient with epithelial ovarian carcinoma. The mice developed clinically evident intraperitoneal tumors and massive ascites containing numerous tumor cells in clumps. CA125 level in our model was high in both serum and ascites supernatants, while levels of other tumor markers, such as AFP, CA-199 and CEA, were normal. Cytogenetic analysis and immunohistochemical staining confirmed its characteristics resembling human epithelial ovarian tumor. Conclusions The model described in this paper accurately mimics the features of ovarian tumor, which may be useful for evaluation of new therapeutics.</p
    corecore