57 research outputs found

    A comprehensive artificial intelligence framework for dental diagnosis and charting

    Get PDF
    Background: The aim of this study was to develop artificial intelligence (AI) guided framework to recognize tooth numbers in panoramic and intraoral radiographs (periapical and bitewing) without prior domain knowledge and arrange the intraoral radiographs into a full mouth series (FMS) arrangement template. This model can be integrated with different diseases diagnosis models, such as periodontitis or caries, to facilitate clinical examinations and diagnoses. Methods: The framework utilized image segmentation models to generate the masks of bone area, tooth, and cementoenamel junction (CEJ) lines from intraoral radiographs. These masks were used to detect and extract teeth bounding boxes utilizing several image analysis methods. Then, individual teeth were matched with a patient’s panoramic images (if available) or tooth repositories for assigning tooth numbers using the multi-scale matching strategy. This framework was tested on 1240 intraoral radiographs different from the training and internal validation cohort to avoid data snooping. Besides, a web interface was designed to generate a report for different dental abnormalities with tooth numbers to evaluate this framework’s practicality in clinical settings. Results: The proposed method achieved the following precision and recall via panoramic view: 0.96 and 0.96 (via panoramic view) and 0.87 and 0.87 (via repository match) by handling tooth shape variation and outperforming other state-of-the-art methods. Additionally, the proposed framework could accurately arrange a set of intraoral radiographs into an FMS arrangement template based on positions and tooth numbers with an accuracy of 95% for periapical images and 90% for bitewing images. The accuracy of this framework was also 94% in the images with missing teeth and 89% with restorations. Conclusions: The proposed tooth numbering model is robust and self-contained and can also be integrated with other dental diagnosis modules, such as alveolar bone assessment and caries detection. This artificial intelligence-based tooth detection and tooth number assignment in dental radiographs will help dentists with enhanced communication, documentation, and treatment planning accurately. In addition, the proposed framework can correctly specify detailed diagnostic information associated with a single tooth without human intervention

    Predicting multiple sclerosis severity with multimodal deep neural networks

    Get PDF
    Multiple Sclerosis (MS) is a chronic disease developed in the human brain and spinal cord, which can cause permanent damage or deterioration of the nerves. The severity of MS disease is monitored by the Expanded Disability Status Scale, composed of several functional sub-scores. Early and accurate classification of MS disease severity is critical for slowing down or preventing disease progression via applying early therapeutic intervention strategies. Recent advances in deep learning and the wide use of Electronic Health Records (EHR) create opportunities to apply data-driven and predictive modeling tools for this goal. Previous studies focusing on using single-modal machine learning and deep learning algorithms were limited in terms of prediction accuracy due to data insufficiency or model simplicity. In this paper, we proposed the idea of using patients’ multimodal longitudinal and longitudinal EHR data to predict multiple sclerosis disease severity in the future. Our contribution has two main facets. First, we describe a pioneering effort to integrate structured EHR data, neuroimaging data and clinical notes to build a multi-modal deep learning framework to predict patient’s MS severity. The proposed pipeline demonstrates up to 19% increase in terms of the area under the Area Under the Receiver Operating Characteristic curve (AUROC) compared to models using single-modal data. Second, the study also provides valuable insights regarding the amount useful signal embedded in each data modality with respect to MS disease prediction, which may improve data collection processes

    Predicting multiple sclerosis disease severity with multimodal deep neural networks

    Full text link
    Multiple Sclerosis (MS) is a chronic disease developed in human brain and spinal cord, which can cause permanent damage or deterioration of the nerves. The severity of MS disease is monitored by the Expanded Disability Status Scale (EDSS), composed of several functional sub-scores. Early and accurate classification of MS disease severity is critical for slowing down or preventing disease progression via applying early therapeutic intervention strategies. Recent advances in deep learning and the wide use of Electronic Health Records (EHR) creates opportunities to apply data-driven and predictive modeling tools for this goal. Previous studies focusing on using single-modal machine learning and deep learning algorithms were limited in terms of prediction accuracy due to the data insufficiency or model simplicity. In this paper, we proposed an idea of using patients' multimodal longitudinal and longitudinal EHR data to predict multiple sclerosis disease severity at the hospital visit. This work has two important contributions. First, we describe a pilot effort to leverage structured EHR data, neuroimaging data and clinical notes to build a multi-modal deep learning framework to predict patient's MS disease severity. The proposed pipeline demonstrates up to 25% increase in terms of the area under the Area Under the Receiver Operating Characteristic curve (AUROC) compared to models using single-modal data. Second, the study also provides insights regarding the amount useful signal embedded in each data modality with respect to MS disease prediction, which may improve data collection processes

    A multitask deep learning approach for pulmonary embolism detection and identification

    Get PDF
    Pulmonary embolism (PE) is a blood clot traveling to the lungs and is associated with substantial morbidity and mortality. Therefore, rapid diagnoses and treatments are essential. Chest computed tomographic pulmonary angiogram (CTPA) is the gold standard for PE diagnoses. Deep learning can enhance the radiologists’workflow by identifying PE using CTPA, which helps to prioritize important cases and hasten the diagnoses for at-risk patients. In this study, we propose a two-phase multitask learning method that can recognize the presence of PE and its properties such as the position, whether acute or chronic, and the corresponding right-to-left ventricle diameter (RV/LV) ratio, thereby reducing false-negative diagnoses. Trained on the RSNA-STR Pulmonary Embolism CT Dataset, our model demonstrates promising PE detection performances on the hold-out test set with the window-level AUROC achieving 0.93 and the sensitivity being 0.86 with a specificity of 0.85, which is competitive with the radiologists’sensitivities ranging from 0.67 to 0.87 with specificities of 0.89–0.99. In addition, our model provides interpretability through attention weight heatmaps and gradient-weighted class activation mapping (Grad-CAM). Our proposed deep learning model could predict PE existence and other properties of existing cases, which could be applied to practical assistance for PE diagnosis

    Predicting Multiple Sclerosis Severity With Multimodal Deep Neural Networks

    Get PDF
    Multiple Sclerosis (MS) is a chronic disease developed in the human brain and spinal cord, which can cause permanent damage or deterioration of the nerves. The severity of MS disease is monitored by the Expanded Disability Status Scale, composed of several functional sub-scores. Early and accurate classification of MS disease severity is critical for slowing down or preventing disease progression via applying early therapeutic intervention strategies. Recent advances in deep learning and the wide use of Electronic Health Records (EHR) create opportunities to apply data-driven and predictive modeling tools for this goal. Previous studies focusing on using single-modal machine learning and deep learning algorithms were limited in terms of prediction accuracy due to data insufficiency or model simplicity. In this paper, we proposed the idea of using patients\u27 multimodal longitudinal and longitudinal EHR data to predict multiple sclerosis disease severity in the future. Our contribution has two main facets. First, we describe a pioneering effort to integrate structured EHR data, neuroimaging data and clinical notes to build a multi-modal deep learning framework to predict patient\u27s MS severity. The proposed pipeline demonstrates up to 19% increase in terms of the area under the Area Under the Receiver Operating Characteristic curve (AUROC) compared to models using single-modal data. Second, the study also provides valuable insights regarding the amount useful signal embedded in each data modality with respect to MS disease prediction, which may improve data collection processes

    Dental CLAIRES: Contrastive LAnguage Image REtrieval Search for Dental Research

    Full text link
    Learning about diagnostic features and related clinical information from dental radiographs is important for dental research. However, the lack of expert-annotated data and convenient search tools poses challenges. Our primary objective is to design a search tool that uses a user's query for oral-related research. The proposed framework, Contrastive LAnguage Image REtrieval Search for dental research, Dental CLAIRES, utilizes periapical radiographs and associated clinical details such as periodontal diagnosis, demographic information to retrieve the best-matched images based on the text query. We applied a contrastive representation learning method to find images described by the user's text by maximizing the similarity score of positive pairs (true pairs) and minimizing the score of negative pairs (random pairs). Our model achieved a hit@3 ratio of 96% and a Mean Reciprocal Rank (MRR) of 0.82. We also designed a graphical user interface that allows researchers to verify the model's performance with interactions.Comment: 10 pages, 7 figures, 4 table

    Dental CLAIRES: Contrastive LAnguage Image REtrieval Search for Dental Research

    Get PDF
    Learning about diagnostic features and related clinical information from dental radiographs is important for dental research. However, the lack of expert-annotated data and convenient search tools poses challenges. Our primary objective is to design a search tool that uses a user\u27s query for oral-related research. The proposed framework

    Machine learning to predict sports-related concussion recovery using clinical data

    Get PDF
    ObjectivesSport-related concussions (SRCs) are a concern for high school athletes. Understanding factors contributing to SRC recovery time may improve clinical management. However, the complexity of the many clinical measures of concussion data precludes many traditional methods. This study aimed to answer the question, what is the utility of modeling clinical concussion data using machine-learning algorithms for predicting SRC recovery time and protracted recovery? MethodsThis was a retrospective case series of participants aged 8 to 18 years with a diagnosis of SRC. A 6-part measure was administered to assess pre-injury risk factors, initial injury severity, and post-concussion symptoms, including the Vestibular Ocular Motor Screening (VOMS) measure, King-Devick Test and C3 Logix Trails Test data. These measures were used to predict recovery time (days from injury to full medical clearance) and binary protracted recovery (recovery time \u3e 21 days) according to several sex-stratified machine-learning models. The ability of the models to discriminate protracted recovery was compared to a human-driven model according to the area under the receiver operating characteristic curve (AUC). ResultsFor 293 males (mean age 14.0 years) and 362 females (mean age 13.7 years), the median (interquartile range) time to recover from an SRC was 26 (18–39) and 21 (14–31) days, respectively. Among 9 machine-learning models trained, the gradient boosting on decision-tree algorithms achieved the best performance to predict recovery time and protracted recovery in males and females. The models’ performance improved when VOMS data were used in conjunction with the King-Devick Test and C3 Logix Trails Test data. For males and females, the AUC was 0.84 and 0.78 versus 0.74 and 0.73, respectively, for statistical models for predicting protracted recovery. ConclusionsMachine-learning models were able to manage the complexity of the vestibular-ocular motor system data. These results demonstrate the clinical utility of machine-learning models to inform prognostic evaluation for SRC recovery time and protracted recovery

    Non-invasive arterial blood pressure measurement and SpO2 estimation using PPG signal: a deep learning framework

    Get PDF
    Background: Monitoring blood pressure and peripheral capillary oxygen saturation plays a crucial role in healthcare management for patients with chronic diseases, especially hypertension and vascular disease. However, current blood pressure measurement methods have intrinsic limitations; for instance, arterial blood pressure is measured by inserting a catheter in the artery causing discomfort and infection. Method: Photoplethysmogram (PPG) signals can be collected via non-invasive devices, and therefore have stimulated researchers’ interest in exploring blood pressure estimation using machine learning and PPG signals as a non-invasive alternative. In this paper, we propose a Transformer-based deep learning architecture that utilizes PPG signals to conduct a personalized estimation of arterial systolic blood pressure, arterial diastolic blood pressure, and oxygen saturation. Results: The proposed method was evaluated with a subset of 1,732 subjects from the publicly available ICU dataset MIMIC III. The mean absolute error is 2.52 ± 2.43 mmHg for systolic blood pressure, 1.37 ± 1.89 mmHg for diastolic blood pressure, and 0.58 ± 0.79% for oxygen saturation, which satisfies the requirements of the Association of Advancement of Medical Instrumentation standard and achieve grades A for the British Hypertension Society standard. Conclusions: The results indicate that our model meets clinical standards and could potentially boost the accuracy of blood pressure and oxygen saturation measurement to deliver high-quality healthcare
    • …
    corecore