65 research outputs found

    The proximate sources of genetic variation in body size plasticity: The relative contributions of feeding behaviour and development in Drosophila melanogaster

    Get PDF
    Body size is a key life-history trait that influences many aspects of an animal’s biology and is shaped by a variety of factors, both genetic and environmental. While we know that locally-adapted populations differ in the extent to which body size responds plastically to environmental conditions like diet, we have a limited understanding of what causes these differences. We hypothesized that populations could differ in the way body size responds to nutrition either by modulating growth rate, development time, feeding rate, or a combination of the above. Using three locally-adapted populations of Drosophila melanogaster from along the east coast of Australia, we investigated body size plasticity across five different diets. We then assessed how these populations differed in feeding behaviour and developmental timing on each of the diets. We observed population-specific plastic responses to nutrition for body size and feeding rate, but not development time. However, differences in feeding rate did not fully explain the differences in the way body size responded to diet. Thus, we conclude that body size variation in locally-adapted populations is shaped by a combination of growth rate and feeding behaviour. This paves the way for further studies that explore how differences in the regulation of the genetic pathways that control feeding behaviour and growth rate contribute to population-specific responses of body size to diet

    Acclimation to warmer temperatures can protect host populations from both further heat stress and the potential invasion of pathogens

    Get PDF
    Thermal acclimation can provide an essential buffer against heat stress for host populations, while acting simultaneously on various life‐history traits that determine population growth. In turn, the ability of a pathogen to invade a host population is intimately linked to these changes via the supply of new susceptible hosts, as well as the impact of warming on its immediate infection dynamics. Acclimation therefore has consequences for hosts and pathogens that extend beyond simply coping with heat stress—governing both population growth trajectories and, as a result, an inherent propensity for a disease outbreak to occur. The impact of thermal acclimation on heat tolerances, however, is rarely considered simultaneously with metrics of both host and pathogen population growth, and ultimately fitness. Using the host Daphnia magna and its bacterial pathogen, we investigated how thermal acclimation impacts host and pathogen performance at both the individual and population scales. We first tested the effect of maternal and direct thermal acclimation on the life‐history traits of infected and uninfected individuals, such as heat tolerance, fecundity, and lifespan, as well as pathogen infection success and spore production. We then predicted the effects of each acclimation treatment on rates of host and pathogen population increase by deriving a host's intrinsic growth rate (r m ) and a pathogen's basic reproductive number (R0). We found that direct acclimation to warming enhanced a host's heat tolerance and rate of population growth, despite a decline in life‐history traits such as lifetime fecundity and lifespan. In contrast, pathogen performance was consistently worse under warming, with within‐host pathogen success, and ultimately the potential for disease spread, severely hampered at higher temperatures. Our results suggest that hosts could benefit more from warming than their pathogens, but only by linking multiple individual traits to population processes can the full impact of higher temperatures on host and pathogen population dynamics be realised

    Phylogenomic analyses of the genus Drosophila reveals genomic signals of climate adaptation

    Get PDF
    Many Drosophila species differ widely in their distributions and climate niches, making them excellent subjects for evolutionary genomic studies. Here, we have developed a database of high-quality assemblies for 46 Drosophila species and one closely related Zaprionus. Fifteen of the genomes were newly sequenced, and 20 were improved with additional sequencing. New or improved annotations were generated for all 47 species, assisted by new transcriptomes for 19. Phylogenomic analyses of these data resolved several previously ambiguous relationships, especially in the melanogaster species group. However, it also revealed significant phylogenetic incongruence among genes, mainly in the form of incomplete lineage sorting in the subgenus Sophophora but also including asymmetric introgression in the subgenus Drosophila. Using the phylogeny as a framework and taking into account these incongruences, we then screened the data for genome-wide signals of adaptation to different climatic niches. First, phylostratigraphy revealed relatively high rates of recent novel gene gain in three temperate pseudoobscura and five desert-adapted cactophilic mulleri subgroup species. Second, we found differing ratios of nonsynonymous to synonymous substitutions in several hundred orthologues between climate generalists and specialists, with trends for significantly higher ratios for those in tropical and lower ratios for those in temperate-continental specialists respectively than those in the climate generalists. Finally, resequencing natural populations of 13 species revealed tropics-restricted species generally had smaller population sizes, lower genome diversity and more deleterious mutations than the more widespread species. We conclude that adaptation to different climates in the genus Drosophila has been associated with large-scale and multifaceted genomic changes

    "Delirium Day": A nationwide point prevalence study of delirium in older hospitalized patients using an easy standardized diagnostic tool

    Get PDF
    Background: To date, delirium prevalence in adult acute hospital populations has been estimated generally from pooled findings of single-center studies and/or among specific patient populations. Furthermore, the number of participants in these studies has not exceeded a few hundred. To overcome these limitations, we have determined, in a multicenter study, the prevalence of delirium over a single day among a large population of patients admitted to acute and rehabilitation hospital wards in Italy. Methods: This is a point prevalence study (called "Delirium Day") including 1867 older patients (aged 65 years or more) across 108 acute and 12 rehabilitation wards in Italian hospitals. Delirium was assessed on the same day in all patients using the 4AT, a validated and briefly administered tool which does not require training. We also collected data regarding motoric subtypes of delirium, functional and nutritional status, dementia, comorbidity, medications, feeding tubes, peripheral venous and urinary catheters, and physical restraints. Results: The mean sample age was 82.0 ± 7.5 years (58 % female). Overall, 429 patients (22.9 %) had delirium. Hypoactive was the commonest subtype (132/344 patients, 38.5 %), followed by mixed, hyperactive, and nonmotoric delirium. The prevalence was highest in Neurology (28.5 %) and Geriatrics (24.7 %), lowest in Rehabilitation (14.0 %), and intermediate in Orthopedic (20.6 %) and Internal Medicine wards (21.4 %). In a multivariable logistic regression, age (odds ratio [OR] 1.03, 95 % confidence interval [CI] 1.01-1.05), Activities of Daily Living dependence (OR 1.19, 95 % CI 1.12-1.27), dementia (OR 3.25, 95 % CI 2.41-4.38), malnutrition (OR 2.01, 95 % CI 1.29-3.14), and use of antipsychotics (OR 2.03, 95 % CI 1.45-2.82), feeding tubes (OR 2.51, 95 % CI 1.11-5.66), peripheral venous catheters (OR 1.41, 95 % CI 1.06-1.87), urinary catheters (OR 1.73, 95 % CI 1.30-2.29), and physical restraints (OR 1.84, 95 % CI 1.40-2.40) were associated with delirium. Admission to Neurology wards was also associated with delirium (OR 2.00, 95 % CI 1.29-3.14), while admission to other settings was not. Conclusions: Delirium occurred in more than one out of five patients in acute and rehabilitation hospital wards. Prevalence was highest in Neurology and lowest in Rehabilitation divisions. The "Delirium Day" project might become a useful method to assess delirium across hospital settings and a benchmarking platform for future surveys

    Multi-wavelength observations of blazar AO 0235+164 in the 2008-2009 flaring state

    Get PDF
    The blazar AO 0235+164 (z = 0.94) has been one of the most active objects observed by Fermi Large Area Telescope (LAT) since its launch in Summer 2008. In addition to the continuous coverage by Fermi, contemporaneous observations were carried out from the radio to γ-ray bands between 2008 September and 2009 February. In this paper, we summarize the rich multi-wavelength data collected during the campaign (including F-GAMMA, GASP-WEBT, Kanata, OVRO, RXTE, SMARTS, Swift, and other instruments), examine the cross-correlation between the light curves measured in the different energy bands, and interpret the resulting spectral energy distributions in the context of well-known blazar emission models. We find that the γ-ray activity is well correlated with a series of near-IR/optical flares, accompanied by an increase in the optical polarization degree. On the other hand, the X-ray light curve shows a distinct 20 day high state of unusually soft spectrum, which does not match the extrapolation of the optical/UV synchrotron spectrum. We tentatively interpret this feature as the bulk Compton emission by cold electrons contained in the jet, which requires an accretion disk corona with an effective covering factor of 19% at a distance of 100 R g. We model the broadband spectra with a leptonic model with external radiation dominated by the infrared emission from the dusty torus. © 2012. The American Astronomical Society. All rights reserved

    ERRATUM: "FERMI DETECTION OF γ-RAY EMISSION FROM THE M2 SOFT X-RAY FLARE ON 2010 JUNE 12" (2012, ApJ, 745, 144)

    Get PDF
    Due to an error at the publisher, the times given for the major tick marks in the X-axis in Figure 1 of the published article are incorrect. The correctly labeled times should be "00:52:00," "00:54:00," ... , and "01:04:00." The correct version of Figure 1 and its caption is shown below. IOP Publishing sincerely regrets this error

    In search of a general theory of species' range evolution.

    Full text link
    Despite the pervasiveness of the world's biodiversity, no single species has a truly global distribution. In fact, most species have very restricted distributions. What limits species from expanding beyond their current geographic ranges? This has been classically treated by ecologists as an ecological problem and by evolutionary biologists as an evolutionary problem. Such a dichotomy is false-the problem of species' ranges sits firmly within the realm of evolutionary ecology. In support of this view, Polechová presents new theory that explains species' range limits with reference to two key factors central to both ecological and evolutionary theory-migration and population size. This new model sets the scene for empirical tests of range limit theory and builds the case for assisted gene flow as a key management tool for threatened species

    The genetic covariance among clinal environments after adaptation to an environmental gradient in Drosophila serrata.

    Full text link
    We examined the genetic basis of clinal adaptation by determining the evolutionary response of life-history traits to laboratory natural selection along a gradient of thermal stress in Drosophila serrata. A gradient of heat stress was created by exposing larvae to a heat stress of 36 degrees for 4 hr for 0, 1, 2, 3, 4, or 5 days of larval development, with the remainder of development taking place at 25 degrees. Replicated lines were exposed to each level of this stress every second generation for 30 generations. At the end of selection, we conducted a complete reciprocal transfer experiment where all populations were raised in all environments, to estimate the realized additive genetic covariance matrix among clinal environments in three life-history traits. Visualization of the genetic covariance functions of the life-history traits revealed that the genetic correlation between environments generally declined as environments became more different and even became negative between the most different environments in some cases. One exception to this general pattern was a life-history trait representing the classic trade-off between development time and body size, which responded to selection in a similar genetic fashion across all environments. Adaptation to clinal environments may involve a number of distinct genetic effects along the length of the cline, the complexity of which may not be fully revealed by focusing primarily on populations at the ends of the cline
    corecore