7 research outputs found

    Fabrication and performance of a monolithic dye-sensitized TiO2/Cu(In,Ga)Se2 thin film tandem solar cell

    Get PDF
    Tandem solar cells using different bandgap absorbers allow efficient photovoltaic conversion in a wide range of the solar spectrum. The optical gaps of the dye-sensitized solar cell and the Cu(In,Ga)Se2 solar cell are ideal for application in double-junction devices and a mechanically stacked device has been reported recently. We report on the monolithic integration of these subcells to cut optical losses at needless interfaces and material costs, achieving 12.2% conversion efficiency at full sunlight. The high open-circuit voltage confirms the series connection, but corrosion of the Cu(In,Ga)Se2 cell by the redox mediator (I−/I3− couple) of the dye-sensitized cell and an associated voltage loss (~140 mV) limits performance

    Influence of reactor surface materials on the ozone zero phenomenon

    No full text
    It is long known that for highly efficient ozone production in a dielectric barrier discharge (DBD), it is beneficial to add a small quantity of nitrogen to the oxygen feed gas. When operated in very pure oxygen without any significant nitrogen content, the ozone formation even drops to zero under certain operating conditions. This is known in the field as the “ozone zero phenomenon”, or OZP. The exact mechanisms of said effect, however, are still not understood and a subject of ongoing research. In the present work, we investigated the influence of different reactor surface materials, and their changes when exposed to plasma, on their influence on ozone formation under different nitrogen conditions. The metal powder deposited on the reactor surfaces by sputtering effects was found to have a buffering effect on the time scale needed for the OZP to fully develop. We conclude that the surface of the DBD reactor, in particular the available surface area for nitrogen compounds to adsorb to, is the crucial element in understanding the processes behind the OZP
    corecore