85 research outputs found

    Elucidating further phylogenetic diversity among the Defluviicoccus-related glycogen-accumulating organisms in activated sludge

    No full text
    Glycogen-accumulating organisms (GAO) are thought to out-compete the polyphosphate-accumulating organisms (PAO) in activated sludge communities removing phosphate (P). Two GAO groups are currently recognized, the gammaproteobacterial Candidatus 'Competibacter phosphatis', and the alphaproteobacterial Defluviicoccus vanusrelated tetrad forming organisms (TFOs). Both are phylogenetically diverse based on their 16S rRNA sequences, with the latter currently considered to contain members falling into three distinct clusters. This paper identifies members of an additional fourth Defluviicoccus cluster from 16S rRNA gene clone library data obtained from a laboratory-scale activated sludge plant community removing P, and details FISH probes designed against them. Probe DF181A was designed to target a single sequence and DF181B designed against the remaining sequences in the cluster. Cells hybridizing with these probes in the biomass samples tested always appeared as either TFOs or in large clusters of small cocci. Members of the Defluviicoccus-related organisms were commonly found in full-scale wastewater treatments plants, sometimes as a dominant population

    Candidatus Monilibacter spp., common bulking filaments in activated sludge, are members of Cluster III Defluviicoccus

    No full text
    Two alphaproteobacterial Neisser negative 'Nostocoida limicola' morphotypes differing slightly in their trichome diameter and filament regularity were dominant populations in the Bendigo, Victoria, Australia activated sludge community removing phosphorus (P). Neither responded to the FISH probes available for any of the other alphaproteobacterial 'N. limicola' morphotypes. Instead both fluoresced with the DF988 FISH probe designed originally to target alphaproteobacterial cluster II Defluviicoccus tetrad forming organisms. A 16S rRNA based clone library from this biomass revealed that the alphaproteobacterial clones grouped closely with Candidatus 'Monilibacter batavus' and Defluviicoccus clones in a cluster separate from the existing cluster I and II Defluviicoccus. When a FISH probe was designed against these, it only hybridized to the thinner and less abundant 'N. limicola' morphotype. Micromanipulation-RT-PCR was used to selectively recover the main 'N. limicola' morphotype and a FISH probe designed against the 16S rRNA clones generated from it showed only this filament fluoresced. From FISH based surveys, both 'N. limicola' variants occurred frequently in phosphorus removal activated sludge systems in Australia treating domestic waste. The data suggest that they represent two new strains of Candidatus 'Monilibacter', which on this evidence are filamentous members of the genus Defluviicoccus, a potential competitor for the polyphosphate accumulating organisms in these communities

    Kinema : a journal for film and audiovisual media

    No full text
    We have isolated the Gram-positive, straight filamentous bacterium “Microthrix parvicella” from an activated sludge sewage treatment plant in Australia by using micromanipulation techniques. The 16S rDNA was amplified directly from cell biomass by the polymerase chain reaction and sequenced. This data has allowed us to phylogenetically place M. parvicella as a deep branching member of the actinomycetes subphylum. It is most closely related to the iron-oxidising strain TH3, members of the order Actinomycetales and to the genus Atopobium. Further phenotypic data for “M. parvicella” are required for the valid naming of this organism

    Genome Sequence and Characterization of the Tsukamurella Bacteriophage TPA2▿ †

    No full text
    The formation of stable foam in activated sludge plants is a global problem for which control is difficult. These foams are often stabilized by hydrophobic mycolic acid-synthesizing Actinobacteria, among which are Tsukamurella spp. This paper describes the isolation from activated sludge of the novel double-stranded DNA phage TPA2. This polyvalent Siphoviridae family phage is lytic for most Tsukamurella species. Whole-genome sequencing reveals that the TPA2 genome is circularly permuted (61,440 bp) and that 70% of its sequence is novel. We have identified 78 putative open reading frames, 95 pairs of inverted repeats, and 6 palindromes. The TPA2 genome has a modular gene structure that shares some similarity to those of Mycobacterium phages. A number of the genes display a mosaic architecture, suggesting that the TPA2 genome has evolved at least in part from genetic recombination events. The genome sequence reveals many novel genes that should inform any future discussion on Tsukamurella phage evolution
    • …
    corecore