1,637 research outputs found

    Perception is Reality: Change Leadership and Work Engagement

    Get PDF
    Purpose The purpose of this paper is to investigate how employee perceptions of change and leadership might impact work engagement following major organizational change. Design/methodology/approach Social media invited US workers recently experiencing major organizational change to anonymously complete a web-based survey requesting qualitative and quantitative responses. Values-based coding and thematic analysis were used to explore qualitative data. Hierarchical and linear regression, and bootstrapped mediation were used to analyze quantitative data. Findings Analysis of qualitative data identified employees’ perceptions of ideal change and ideal leadership were well supported in the change leadership literature. Analysis of quantitative data indicated that employee perceptions of leadership fully mediated the relationship between employee perceptions of change and work engagement. Practical implications Study findings imply that how employees perceive change is explained by how they perceive leadership during change, and that these perceptions impact work engagement. Although these findings appear commonsensical, the less than stellar statistics on major organizational change may encourage leaders to become more follower-focused throughout the change process. Originality/value The study makes a contribution to an understudied area of organizational research, specifically applied information processing theory. This is the first study that identifies employee perceptions of leadership as a mediator for perceptions of change and work engagement. From a value perspective, leaders as successful change agents recognize significant cost savings in dollars and human welfare by maintaining healthy workplaces with highly engaged workers

    The Dual Basis for Subordinate\u27s Perception of Change

    Get PDF
    Psychological research has shown that perception often works in a dual-basis in which a person examines a subject and weighs the subject against an ideal and non-ideal scale, independently. There have been few studies though, that have tried to apply this mechanism as a component of the dynamics involved in Leadership Studies, Organizational Behavior, or Change Management. If the mechanism is active in subordinates, then leaders can make better-informed decisions regarding their organizations, based on an understanding that reaction to both their actions and to changes that they enact are based not only on perceived ideal characteristics, but also non-ideal characteristics. This study (n = 114) sought to identify whether subordinates who have recently experienced a change within their organization were affected by the change and their leaders\u27 behavior through a dual-basis of perception mechanism. Results confirm that the perception on ideal and non-ideal scales for a change and for leader behavior does account for some of the variance seen in an organization\u27s members\u27 engagement. The strength of the perception mechanism and the positive or negative influence that the perceptions have on the subordinates were not as expected. In the body of Leadership Studies, these findings add value to the understanding that leadership is founded in the leader-follower relationship and that this relationship is affected by perceptions of both ideals and non-ideals

    Kaon Condensation and Lambda-Nucleon Loop in the Relativistic Mean-Field Approach

    Full text link
    The possibility of kaon condensation in high-density symmetric nuclear matter is investigated including both s- and p-wave kaon-baryon interactions within the relativistic mean-field (RMF) theory. Above a certain density, we have a collective Kˉs{\bar K}_s state carrying the same quantum numbers as the antikaon. The appearance of the Kˉs{\bar K}_s state is caused by the time component of the axial-vector interaction between kaons and baryons. It is shown that the system becomes unstable with respect to condensation of KK-Kˉs{\bar K}_s pairs. We consider how the effective baryon masses affect the kaon self-energy coming from the time component of the axial-vector interaction. Also, the role of the spatial component of the axial-vector interaction on the possible existence of the collective kaonic states is discussed in connection with Λ\Lambda-mixing effects in the ground state of high-density matter. Implications of KKˉsK{\bar K}_s condensation for high-energy heavy-ion collisions are briefly mentioned.Comment: 27 pages text, 8 figure

    The Generation Challenge Programme Platform: Semantic Standards and Workbench for Crop Science

    Get PDF
    The Generation Challenge programme (GCP) is a global crop research consortium directed toward crop improvement through the application of comparative biology and genetic resources characterization to plant breeding. A key consortium research activity is the development of a GCP crop bioinformatics platform to support GCP research. This platform includes the following: (i) shared, public platform-independent domain models, ontology, and data formats to enable interoperability of data and analysis flows within the platform; (ii) web service and registry technologies to identify, share, and integrate information across diverse, globally dispersed data sources, as well as to access high-performance computational (HPC) facilities for computationally intensive, high-throughput analyses of project data; (iii) platform-specific middleware reference implementations of the domain model integrating a suite of public (largely open-access/-source) databases and software tools into a workbench to facilitate biodiversity analysis, comparative analysis of crop genomic data, and plant breeding decision making

    Inclusive nonresonant multilepton probes of new phenomena at s\sqrt{s}= 13 TeV

    Get PDF
    An inclusive search for nonresonant signatures of beyond the standard model (SM) phenomena in events with three or more charged leptons, including hadronically decaying τ leptons, is presented. The analysis is based on a data sample corresponding to an integrated luminosity of 138 fb−1^{-1} of proton-proton collisions at s\sqrt{s}= 13 TeV collected by the CMS experiment at the LHC in 2016–2018. Events are categorized based on the lepton and b-tagged jet multiplicities and various kinematic variables. Three scenarios of physics beyond the SM are probed, and signal-specific boosted decision trees are used for enhancing sensitivity. No significant deviations from the background expectations are observed. Lower limits are set at 95% confidence level on the mass of type-III seesaw heavy fermions in the range 845–1065 GeV for various decay branching fraction combinations to SM leptons. Doublet and singlet vectorlike τ lepton extensions of the SM are excluded for masses below 1045 GeV and in the mass range 125–150 GeV, respectively. Scalar leptoquarks decaying exclusively to a top quark and a lepton are excluded below 1.12–1.42 TeV, depending on the lepton flavor. For the type-III seesaw as well as the vectorlike doublet model, these constraints are the most stringent to date. For the vectorlike singlet model, these are the first constraints from the LHC experiments. Detailed results are also presented to facilitate alternative theoretical interpretations

    Measurement of inclusive and differential cross sections for single top quark production in association with a W boson in proton-proton collisions at s \sqrt{s} = 13 TeV

    Get PDF
    Measurements of the inclusive and normalised differential cross sections are presented for the production of single top quarks in association with a W boson in proton-proton collisions at a centre-of-mass energy of 13 TeV. The data used were recorded with the CMS detector at the LHC during 2016-2018, and correspond to an integrated luminosity of 138 fb−1^{−1}. Events containing one electron and one muon in the final state are analysed. For the inclusive measurement, a multivariate discriminant, exploiting the kinematic properties of the events is used to separate the signal from the dominant ttˉt\bar{t} background. A cross section of 79.2 ± 0.9 (stat) −8.0+7.7^{+7.7}_{−8.0} (syst) ± 1.2 (lumi) pb is obtained, consistent with the predictions of the standard model. For the differential measurements, a fiducial region is defined according to the detector acceptance, and the requirement of exactly one jet coming from the fragmentation of a bottom quark. The resulting distributions are unfolded to particle level and agree with the predictions at next-to-leading order in perturbative quantum chromodynamics

    Search for long-lived particles decaying to a pair of muons in proton-proton collisions at s \sqrt{s} = 13 TeV

    Get PDF
    An inclusive search for long-lived exotic particles decaying to a pair of muons is presented. The search uses data collected by the CMS experiment at the CERN LHC in proton-proton collisions at s√ = 13 TeV in 2016 and 2018 and corresponding to an integrated luminosity of 97.6 fb−1. The experimental signature is a pair of oppositely charged muons originating from a common secondary vertex spatially separated from the pp interaction point by distances ranging from several hundred ÎŒm to several meters. The results are interpreted in the frameworks of the hidden Abelian Higgs model, in which the Higgs boson decays to a pair of long-lived dark photons ZD, and of a simplified model, in which long-lived particles are produced in decays of an exotic heavy neutral scalar boson. For the hidden Abelian Higgs model with m(ZD) greater than 20 GeV and less than half the mass of the Higgs boson, they provide the best limits to date on the branching fraction of the Higgs boson to dark photons for cτ(ZD) (varying with m(ZD)) between 0.03 and ≈0.5 mm, and above ≈0.5 m. Our results also yield the best constraints on long-lived particles with masses larger than 10 GeV produced in decays of an exotic scalar boson heavier than the Higgs boson and decaying to a pair of muons

    Observation of the Rare Decay of the η Meson to Four Muons

    Get PDF
    A search for the rare η→Ό+Ό−Ό+Ό− double-Dalitz decay is performed using a sample of proton-proton collisions, collected by the CMS experiment at the CERN LHC with high-rate muon triggers during 2017 and 2018 and corresponding to an integrated luminosity of 101  fb−1. A signal having a statistical significance well in excess of 5 standard deviations is observed. Using the η→Ό+Ό− decay as normalization, the branching fraction B(η→Ό+Ό−Ό+Ό−)=[5.0±0.8(stat)±0.7(syst)±0.7(B2ÎŒ)]×10−9 is measured, where the last term is the uncertainty in the normalization channel branching fraction. This work achieves an improved precision of over 5 orders of magnitude compared to previous results, leading to the first measurement of this branching fraction, which is found to agree with theoretical predictions

    Search for invisible decays of the Higgs boson produced via vector boson fusion in proton-proton collisions at s\sqrt{s} = 13 TeV

    Get PDF
    A search for invisible decays of the Higgs boson produced via vector boson fusion (VBF) has been performed with 101  fb−1^{-1} of proton-proton collisions delivered by the LHC at s\sqrt{s} =13  TeV and collected by the CMS detector in 2017 and 2018. The sensitivity to the VBF production mechanism is enhanced by constructing two analysis categories, one based on missing transverse momentum and a second based on the properties of jets. In addition to control regions with Z and W boson candidate events, a highly populated control region, based on the production of a photon in association with jets, is used to constrain the dominant irreducible background from the invisible decay of a Z boson produced in association with jets. The results of this search are combined with all previous measurements in the VBF topology, based on data collected in 2012 (at s\sqrt{s} =8  TeV), 2015, and 2016, corresponding to integrated luminosities of 19.7, 2.3, and 36.3  fb−1^{-1}, respectively. The observed (expected) upper limit on the invisible branching fraction of the Higgs boson is found to be 0.18 (0.10) at the 95% confidence level, assuming the standard model production cross section. The results are also interpreted in the context of Higgs-portal models

    Measurement of the B0^{0}s_{s} → ÎŒ+^{+} Ό−^{-} decay properties and search for the B0^{0} → ÎŒ+^{+}Ό−^{-} decay in proton-proton collisions at √s = 13 TeV

    Get PDF
    • 

    corecore