600 research outputs found
Modelling predicts that heat stress and not drought will limit wheat yield in Europe
Global warming is characterised by shifts in weather patterns and increases in extreme weather events. New crop cultivars with specific physiological traits will therefore be required if climate change is not to result in losses of yield and food shortages. However, the intrinsic uncertainty of climate change predictions poses a challenge to plant breeders and crop scientists who have limited time and resources and must select the most appropriate traits for improvement. Modelling is, therefore, a powerful tool to identify future threats to crop production and hence targets for improvement. Wheat is the most important crop in temperate zones, including Europe, and is the staple food crop for many millions of humans and their livestock. However, its production is highly sensitive to environmental conditions, with increased temperature and incidence of drought associated with global warming posing potential threats to yield in Europe. We have therefore predicted the future impacts of these environmental changes on wheat yields using a wheat simulation model combined with climate scenarios based on fifteen global climate models from the IPCC AR4 multi-model ensemble. Despite the lower summer precipitation predicted for Europe, the impact of drought on wheat yields is likely to be smaller than at present, because the warmer conditions will result in earlier maturation before drought becomes severe later in the summer. By contrast, the probability of heat stress around flowering is predicted to increase significantly which is likely to result in considerable yield losses for heat sensitive wheat cultivars commonly grown in north Europe. Breeding strategies should therefore focus on the development of wheat varieties which are tolerant to high temperature around flowering, rather than on developing varieties resistant to drought which may be required for other parts of the world
Recommended from our members
Modelling predicts that heat stress, not drought, will increase vulnerability of wheat in Europe
New crop cultivars will be required for a changing climate characterised by increased summer drought and heat stress in Europe. However, the uncertainty in climate predictions poses a challenge to crop scientists and breeders who have limited time and resources and must select the most appropriate traits for improvement. Modelling is a powerful tool to quantify future threats to crops and hence identify targets for improvement. We have used a wheat simulation model combined with local-scale climate scenarios to predict impacts of heat stress and drought on winter wheat in Europe. Despite the lower summer precipitation projected for 2050s across Europe, relative yield losses from drought is predicted to be smaller in the future, because wheat will mature earlier avoiding severe drought. By contrast, the risk of heat stress around flowering will increase, potentially resulting in substantial yield losses for heat sensitive cultivars commonly grown in northern Europe
Recommended from our members
Investigating the effects of inter-annual weather variation (1968- 2016) on the functional response of cereal grain yield to applied nitrogen, using data from the Rothamsted Long-Term experiments
The effect of weather on inter-annual variation in the crop yield response to nitrogen (N) fertilizer for winter wheat (Triticum aestivvum L.) and spring barley (Hordeum vulgare L.) was investigated using yield data from the Broadbalk Wheat and Hoosfield Spring Barley long-term experiments at Rothamsted Research. Grain yields of crops from 1968 to 2016 were modelled as a function of N rates using a linear-plus-exponential (LEXP) function. The extent to which inter-annual variation in the parameters of these responses was explained by variations in weather (monthly summarized temperatures and rainfall), and by changes in the cultivar grown, was assessed. The inter-annual variability in rainfall and underlying temperature influenced the crop N response and hence grain yields in both crops. Asymptotic yields in wheat were particularly sensitive to mean temperature in November, April and May, and to total rainfall in October, February and June. In spring barley asymptotic yields were sensitive to mean temperature in February and June, and to total rainfall in April to July inclusive and September.
The method presented here explores the separation of agronomic and environmental (weather) influences on crop yield over time. Fitting N response curves across multiple treatments can support an informative analysis of the influence of weather variation on the yield variability. Whilst there are issues of the confounding and collinearity of explanatory variables within such models, and that other factors also influence yields over time, our study confirms the considerable impact of weather variables at certain times of the year. This emphasizes the importance of including weather temporal variation when evaluating the impacts of climate change on crops
Agriculture in a changing climate : Preface
Agriculture is an economic sector that is particularly sensitive to weather. Recent meteorological events have reduced crop production in different parts of the world. Weather extremes resulting from climate change are projected to increase, making crop production more vulnerable and ultimately threatening food security. A continuing effort to develop scientific knowledge in climate and agriculture will help to manage risks and opportunities in these fields. This special issue of Climate Research represents a collection of studies that contribute to the general understanding of weather-related risks and climate impacts on agricultural system
Heat tolerance around flowering in wheat identified as a key trait for increased yield potential in Europe under climate change
To deliver food security for the 9 billon population in 2050, a 70% increase in world food supply will be required. Projected climatic and environmental changes emphasize the need for breeding strategies that delivers both a substantial increase in yield potential and resilience to extreme weather events such as heat waves, late frost, and drought. Heat stress around sensitive stages of wheat development has been identified as a possible threat to wheat production in Europe. However, no estimates have been made to assess yield losses due to increased frequency and magnitude of heat stress under climate change. Using existing experimental data, the Sirius wheat model was refined by incorporating the effects of extreme temperature during flowering and grain filling on accelerated leaf senescence, grain number, and grain weight. This allowed us, for the first time, to quantify yield losses resulting from heat stress under climate change. The model was used to optimize wheat ideotypes for CMIP5-based climate scenarios for 2050 at six sites in Europe with diverse climates. The yield potential for heat-tolerant ideotypes can be substantially increased in the future (e.g. by 80% at Seville, 100% at Debrecen) compared with the current cultivars by selecting an optimal combination of wheat traits, e.g. optimal phenology and extended duration of grain filling. However, at two sites, Seville and Debrecen, the grain yields of heat-sensitive ideotypes were substantially lower (by 54% and 16%) and more variable compared with heat-tolerant ideotypes, because the extended grain filling required for the increased yield potential was in conflict with episodes of high temperature during flowering and grain filling. Despite much earlier flowering at these sites, the risk of heat stress affecting yields of heat-sensitive ideotypes remained high. Therefore, heat tolerance in wheat is likely to become a key trait for increased yield potential and yield stability in southern Europe in the future
Local impacts of climate change on winter wheat in Great Britain
Under future CMIP5 climate change scenarios for 2050, an increase in wheat yield of about 10% is predicted in Great Britain (GB) as a result of the combined effect of CO2 fertilization and a shift in phenology. Compared to the present day, crops escape increases in the climate impacts of drought and heat stresses on grain yield by developing before these stresses can occur. In the future, yield losses from water stress over a growing season will remain about the same across Great Britain with losses reaching around 20% of potential yield, while losses from drought around flowering will decrease and account for about 9% of water limited yield. Yield losses from heat stress around flowering will remain negligible in the future. These conclusions are drawn from a modelling study based on the response of the Sirius wheat simulation model to local-scale 2050-climate scenarios derived from 19 Global Climate Models from the CMIP5 ensemble at 25 locations representing current or potential wheat-growing areas in GB. However, depending on susceptibility to water stress, substantial interannual yield variation between locations is predicted, in some cases suggesting low wheat yield stability. For this reason, local-scale studies should be performed to evaluate uncertainties in yield prediction related to future weather patterns
Climate Change Affects Winter Chill for Temperate Fruit and Nut Trees
Temperate fruit and nut trees require adequate winter chill to produce economically viable yields. Global warming has the potential to reduce available winter chill and greatly impact crop yields.We estimated winter chill for two past (1975 and 2000) and 18 future scenarios (mid and end 21st century; 3 Global Climate Models [GCMs]; 3 greenhouse gas emissions [GHG] scenarios). For 4,293 weather stations around the world and GCM projections, Safe Winter Chill (SWC), the amount of winter chill that is exceeded in 90% of all years, was estimated for all scenarios using the "Dynamic Model" and interpolated globally. We found that SWC ranged between 0 and about 170 Chill Portions (CP) for all climate scenarios, but that the global distribution varied across scenarios. Warm regions are likely to experience severe reductions in available winter chill, potentially threatening production there. In contrast, SWC in most temperate growing regions is likely to remain relatively unchanged, and cold regions may even see an increase in SWC. Climate change impacts on SWC differed quantitatively among GCMs and GHG scenarios, with the highest GHG leading to losses up to 40 CP in warm regions, compared to 20 CP for the lowest GHG.The extent of projected changes in winter chill in many major growing regions of fruits and nuts indicates that growers of these commodities will likely experience problems in the future. Mitigation of climate change through reductions in greenhouse gas emissions can help reduce the impacts, however, adaption to changes will have to occur. To better prepare for likely impacts of climate change, efforts should be undertaken to breed tree cultivars for lower chilling requirements, to develop tools to cope with insufficient winter chill, and to better understand the temperature responses of tree crops
Local thermal fluctuations in current-carrying superconducting nanowires
We analyze the effect of different types of fluctuations in internal electron
energy on the rates of dark and photon counts in straight current-carrying
superconducting nanowires. Dark counts appear due to thermal fluctuations in
statistically independent cells with the effective size of the order of the
coherence length; each count corresponds to an escape from the equilibrium
state through an appropriate saddle point. For photon counts, spectral
broadening of the deterministic cut off in the spectra of the detection
efficiency can be phenomenologically explained by local thermal fluctuations in
the electron energy within cells with the same effective volume as for dark
counts
- …