2 research outputs found

    Ocular myasthenia gravis saccades as a measure of extraocular muscle function

    Get PDF
    BACKGROUND: It is important to understand the pathophysiology of ocular myasthenia gravis (OMG) to improve treatment. AIM: To use modern video-oculography to characterise saccadic eye movements in patients with OMG, including anti-AChR, anti-MuSK, anti-LRP4, and seronegative OMG. METHODS: In total, 21 patients with OMG and five age-matched healthy control subjects underwent video-oculography. Participants performed a sequence of horizontal saccades (3 minutes each) at ±5°, ± 10°, and ±20°, followed by 3 minutes of saccades directed at randomly presented targets at ±5°, ± 10°, and ±15°. We recorded the direction, amplitude, duration, peak, and average velocity of each saccade for each task for each participant. RESULTS: Saccadic amplitude, duration, and average velocity were all lower in OMG patients than in control subjects (p < 0.021). Saccadic amplitude and velocity decreased over time, but this decrease was similar in OMG patients and control subjects. Fixation drift and ocular disparity tended to be greater in OMG patients than in control subjects. Saccadic intrusions occurred more frequently in OMG patients than in control subjects (p < 0.001). No significant effects of time or group by time on fixation drift or ocular disparity were found. DISCUSSION: Saccadic velocities in OMG patients differed from those in normal control subjects, which suggests that OMG affects fast-twitch fibres, although fast-twitch fibres were still able to generate “twitch” or “quiver” movements in the presence of even severe ophthalmoplegia. Slow-twitch muscle fibres involved in gaze holding were also affected, accounting for increased fixation drift following saccades. Our objective finding of increased fixation drift and a larger number of saccadic intrusions mirror our anecdotal experience of patients with OMG who report significant diplopia despite minimal ophthalmoplegia on examination. Such microsaccades may be a surrogate for compensation of a gaze-holding deficit in MG

    Reflexive and volitional saccadic eye movements and their changes in age and progressive supranuclear palsy

    Get PDF
    BACKGROUND AND OBJECTIVES: Saccades, rapid movements of the eyes towards a visual or remembered target, are useful in understanding the healthy brain and the pathology of neurological conditions such as progressive supranuclear palsy (PSP). We set out to investigate the parameters of horizontal reflexive and volitional saccades, both visually guided and memory-guided, over a 1 min epoch in healthy individuals and PSP patients. METHODS: An experimental paradigm tested reflexive, volitional visually guided, and volitional memory-guided saccades in young healthy controls (n = 14; 20-31 years), PSP patients (n = 11; 46-75 years) and older age-matched healthy controls (n = 6; 56-71 years). The accuracy and velocity of saccades was recorded using an EyeBrain T2® video eye tracker and analyses performed using the MyEyeAnalysis® software. Two-way analysis of variance (ANOVA) was used to identify significant effects (p < 0.01) between young and older controls to investigate the effects of ageing upon saccades, and between PSP patients and age-matched controls to study the effects of PSP upon saccades. RESULTS: In both healthy individuals and PSP patients, volitional saccades are slower and less accurate than reflexive saccades. In PSP patients, accuracy is lower across all saccade types compared to age-matched controls, but velocity is lower only for reflexive saccades. Crucially, there is no change in accuracy or velocity of consecutive saccades over short (one-minute) timescales in controls or PSP patients. CONCLUSIONS: Velocity and accuracy of saccades in PSP does not decrease over one-minute timescales, contrary to that previously observed in Parkinson's Disease (PD), suggesting a potential clinical biomarker for the distinction of PSP from PD
    corecore