6 research outputs found
Real-time Artificial Intelligence for Accelerator Control: A Study at the Fermilab Booster
We describe a method for precisely regulating the gradient magnet power
supply at the Fermilab Booster accelerator complex using a neural network
trained via reinforcement learning. We demonstrate preliminary results by
training a surrogate machine-learning model on real accelerator data to emulate
the Booster environment, and using this surrogate model in turn to train the
neural network for its regulation task. We additionally show how the neural
networks to be deployed for control purposes may be compiled to execute on
field-programmable gate arrays. This capability is important for operational
stability in complicated environments such as an accelerator facility.Comment: 16 pages, 10 figures. Submitted to Physical Review Accelerators and
Beams. For associated dataset and data sheet see
http://doi.org/10.5281/zenodo.408898
Recommended from our members
Fermilab Main Injector Collimation Systems: Design, Commissioning and Operation
The Fermilab Main Injector is moving toward providing 400 kW of 120 GeV proton beams using slip stacking injection of eleven Booster batches. Loss of 5% of the beam at or near injection energy results in 1.5 kW of beam loss. A collimation system has been implemented to localize this loss with the design emphasis on beam not captured in the accelerating RF buckets. More than 95% of these losses are captured in the collimation region. We will report on the construction, commissioning and operation of this collimation system. Commissioning studies and loss measurement tools will be discussed. Residual radiation monitoring of the Main Injector machine components will be used to demonstrate the effectiveness of these efforts
Fermilab main injector: High intensity operation and beam loss control
From 2005 through 2012, the Fermilab Main Injector provided intense beams of 120Â GeV protons to produce neutrino beams and antiprotons. Hardware improvements in conjunction with improved diagnostics allowed the system to reach sustained operation at 400Â kW beam power. Transmission was very high except for beam lost at or near the 8Â GeV injection energy where 95% beam transmission results in about 1.5Â kW of beam loss. By minimizing and localizing loss, residual radiation levels fell while beam power was doubled. Lost beam was directed to either the collimation system or to the beam abort. Critical apertures were increased while improved instrumentation allowed optimal use of available apertures. We will summarize the improvements required to achieve high intensity, the impact of various loss control tools and the status and trends in residual radiation in the Main Injector