6 research outputs found
Recommended from our members
Single cell Hi-C identifies plastic chromosome conformations underlying the gastrulation enhancer landscape.
Embryonic development involves massive proliferation and differentiation of cell lineages. This must be supported by chromosome replication and epigenetic reprogramming, but how proliferation and cell fate acquisition are balanced in this process is not well understood. Here we use single cell Hi-C to map chromosomal conformations in post-gastrulation mouse embryo cells and study their distributions and correlations with matching embryonic transcriptional atlases. We find that embryonic chromosomes show a remarkably strong cell cycle signature. Despite that, replication timing, chromosome compartment structure, topological associated domains (TADs) and promoter-enhancer contacts are shown to be variable between distinct epigenetic states. About 10% of the nuclei are identified as primitive erythrocytes, showing exceptionally compact and organized compartment structure. The remaining cells are broadly associated with ectoderm and mesoderm identities, showing only mild differentiation of TADs and compartment structures, but more specific localized contacts in hundreds of ectoderm and mesoderm promoter-enhancer pairs. The data suggest that while fully committed embryonic lineages can rapidly acquire specific chromosomal conformations, most embryonic cells are showing plastic signatures driven by complex and intermixed enhancer landscapes
SDSS-V: Pioneering Panoptic Spectroscopy
SDSS-V will be an all-sky, multi-epoch spectroscopic survey of over six million objects. It is designed to decode the history of the Milky Way, trace the emergence of the chemical elements, reveal the inner workings of stars, and investigate the origin of planets. It will also create an integral-field spectroscopic map of the gas in the Galaxy and the Local Group that is 1,000x larger than the current state of the art and at high enough spatial resolution to reveal the self-regulation mechanisms of galactic ecosystems. SDSS-V will pioneer systematic, spectroscopic monitoring across the whole sky, revealing changes on timescales from 20 minutes to 20 years. The survey will thus track the flickers, flares, and radical transformations of the most luminous persistent objects in the universe: massive black holes growing at the centers of galaxies. The scope and flexibility of SDSS-V will be unique among extant and future spectroscopic surveys: it is all-sky, with matched survey infrastructures in both hemispheres; it provides near-IR and optical multi-object fiber spectroscopy that is rapidly reconfigurable to serve high target densities, targets of opportunity, and time-domain monitoring; and it provides optical, ultra-wide-field integral field spectroscopy. SDSS-V, with its programs anticipated to start in 2020, will be well-timed to multiply the scientific output from major space missions (e.g., TESS, Gaia, eROSITA) and ground-based projects. SDSS-V builds on the 25-year heritage of SDSS's advances in data analysis, collaboration infrastructure, and product deliverables. The project is now refining its science scope, optimizing the survey strategies, and developing new hardware that builds on the SDSS-IV infrastructure. We present here an overview of the current state of these developments as we seek to build our worldwide consortium of institutional and individual members
SDSS-V: Pioneering Panoptic Spectroscopy
SDSS-V will be an all-sky, multi-epoch spectroscopic survey of over six million objects. It is designed to decode the history of the Milky Way, trace the emergence of the chemical elements, reveal the inner workings of stars, and investigate the origin of planets. It will also create an integral-field spectroscopic map of the gas in the Galaxy and the Local Group that is 1,000x larger than the current state of the art and at high enough spatial resolution to reveal the self-regulation mechanisms of galactic ecosystems. SDSS-V will pioneer systematic, spectroscopic monitoring across the whole sky, revealing changes on timescales from 20 minutes to 20 years. The survey will thus track the flickers, flares, and radical transformations of the most luminous persistent objects in the universe: massive black holes growing at the centers of galaxies. The scope and flexibility of SDSS-V will be unique among extant and future spectroscopic surveys: it is all-sky, with matched survey infrastructures in both hemispheres; it provides near-IR and optical multi-object fiber spectroscopy that is rapidly reconfigurable to serve high target densities, targets of opportunity, and time-domain monitoring; and it provides optical, ultra-wide-field integral field spectroscopy. SDSS-V, with its programs anticipated to start in 2020, will be well-timed to multiply the scientific output from major space missions (e.g., TESS, Gaia, eROSITA) and ground-based projects. SDSS-V builds on the 25-year heritage of SDSS's advances in data analysis, collaboration infrastructure, and product deliverables. The project is now refining its science scope, optimizing the survey strategies, and developing new hardware that builds on the SDSS-IV infrastructure. We present here an overview of the current state of these developments as we seek to build our worldwide consortium of institutional and individual members.keywords: Astrophysics - Astrophysics of Galaxies
eid: arXiv:1711.03234
archiveprefix: arXiv
adsurl: https://ui.adsabs.harvard.edu/#abs/2017arXiv171103234K
adsnote: Provided by the SAO/NASA Astrophysics Data Systemstatus: Published onlin