114 research outputs found
Complex VLSI Feature Comparison for Commercial Microelectronics Verification
Shortcomings in IC verification make for glaring vulnerabilities in the form of hardware backdoors, or extraneous operation modes that allow unauthorized, undetected access. The DARPA TRUST program addressed the need for verification of untrusted circuits using industry-standard and custom software. The process developed under TRUST and implemented at the AFRL Mixed Signal Design Center has not been tested using real-world circuits outside of the designated TRUST test cases. This research demonstrates the potential of applying software designed for TRUST test articles on microchips from questionable sources. A specific process is developed for both transistor-level library cell verification and gate-level circuit verification. The relative effectiveness and scalability of the process are assessed
SELF-CHEM: Student Engagement in Learning Through Flipped Chemistry Lectures
This project introduces the idea of âflipped lecturingâ to a group of second year students. The aim of flipped lecturing is to provide much of the âcontent deliveryâ of lecture in advance, so that the lecture hour can be devoted to more in-depth discussion, problem solving, etc. As well as development of the material, a formal evaluation is being conducted. Fifty-one students from year 2 Chemical Thermodynamics module took part in this study. Students were provided with online lectures in advance of their lectures. Along with each online lecture, students were given a handout to work through as they watched the video. Each week, a quiz was completed before each lecture, which allowed students to check their understanding and provided a grade for their continuous assessment mark. The evaluation is examining both the studentsâ usage of materials and their engagement in lectures. This involves analysis of access statistics along with an in-class cognitive engagement instrument. The latter is measured by âinterruptingâ students as they work through a problem and asking four short questions which are drawn from another study (Rotgans and Schmidt 2011), which aimed to examine how students were engaging with the materials in that moment. Results from this study, along with access data, quiz scores, and student comments, aim to build up a profile of how the flipped lecture works for middle stage undergraduate students
Harnessing technology in chemistry education
Using technology when teaching or to support learning is becoming more common place. This perspective discusses the use of technology in our teaching by considering it from the viewpoint of what we need to support our curricula, investigating how technology can help. Nine approaches that have become popular in recent years are outlined with particular emphasis on curriculum delivery problems that they could address, and some recent literature examples of where they have been used. The integration of technology argued for is considered under the umbrella of cognitive load theory, and arising out of this, an approach of how we might progress the use of technology in our teaching is suggested
SELF-CHEM: Student Engagement in Learning Through Flipped Chemistry Lectures.
This project introduces the idea of âflipped lecturingâ to a group of second year students. The aim of flipped lecturing is to provide much of the âcontent deliveryâ of lecture in advance, so that the lecture hour can be devoted to more in-depth discussion, problem solving, etc. As well as development of the material, a formal evaluation is being conducted. Fifty-one students from year 2 Chemical Thermodynamics module took part in this study. Students were provided with online lectures in advance of their lectures. Along with each online lecture, students were given a handout to work through as they watched the video. Each week, a quiz was completed before each lecture, which allowed students to check their understanding and provided a grade for their continuous assessment mark. The evaluation is examining both the studentsâ usage of materials and their engagement in lectures. This involves analysis of access statistics along with an in-class cognitive engagement instrument. The latter is measured by âinterruptingâ students as they work through a problem and asking four short questions which are drawn from another study (Rotgans and Schmidt 2011), which aimed to examine how students were engaging with the materials in that moment. Results from this study, along with access data, quiz scores, and student comments, aim to build up a profile of how the flipped lecture works for middle stage undergraduate students
Pre-lecture Resources to Reduce In-Lecture Cognitive Load
In order to reduce an observed gap in Year 1 performance between students who had and had not completed chemistry at Leaving Certificate in a first year chemistry group, an intervention based on cognitive load theory was implemented. Students completed ten pre-lecture resources before associated lectures. The resources took no longer than five minutes to complete and aimed to introduce students to the core terminology of the lecture. Resources were designed with the principles of cognitive load theory and multimedia resources in mind. They were administered through the DIT Webcourses virtual learning environment and students obtained feedback on a short quiz and a mark in the gradebook after completing each resource quiz. The resources were integrated into the lecture activity, increasing in-class discussion. After implementing the resources, the performances in a mid-semester exam and the end of year exam was examined. For the first time, studentsâ prior knowledge was not a predictor of performance in these exams. The work resulted in dissemination at several national and international conferences, an accepted journal publication and a Teaching and Learning award
A Highly Efficient Ag-ZnO Photocatalyst: Synthesis, Properties, and Mechanism
Highly photocatalytically active silver-modified ZnO has been prepared and the effect of silver modification was studied. The structural and optical properties were characterized by X-ray diffraction, Fourier transform IR, differential scanning calorimetry, BET surface area, Raman, UV-vis, and photoluminescence spectroscopy. The photocatalytic activity of these materials was studied by analyzing the degradation of an organic dye, rhodamine 6G (R6G), and it is found that 3 mol % silver-modified ZnO at 400°C shows approximately four times higher rate of degradation than that of unmodified ZnO and a three times higher rate than that of commercial TiO 2 photocatalyst Degussa P-25. It was also noted that the photocatalytic activity for the modified ZnO sample was five times higher than the unmodified sample using sunlight. The effect of silver in enhancing the photocatalytic activity has been studied by analyzing the emission properties of both ZnO and silvermodified ZnO in the presence (emission increases) and absence (emission decreases) of R6G. We attribute these observations to the extent of valence band hole production and the role of silver in trapping the conduction band (CB) electrons in the absence of R6G. In the presence of R6G, the dye preserves the CB electron population in the metal oxide, thus preserving and enhancing emission intensity. The sensitizing property of the dye and electron scavenging ability of silver together constitute to the interfacial charge transfer process in such a way to utilize the photoexcited electrons
- âŚ