3,035 research outputs found

    A Temperature and Abundance Retrieval Method for Exoplanet Atmospheres

    Full text link
    We present a new method to retrieve molecular abundances and temperature profiles from exoplanet atmosphere photometry and spectroscopy. We run millions of 1D atmosphere models in order to cover the large range of allowed parameter space, and present error contours in the atmospheric properties, given the data. In order to run such a large number of models, we have developed a parametric pressure-temperature (P-T) profile coupled with line-by-line radiative transfer, hydrostatic equilibrium, and energy balance, along with prescriptions for non-equilibrium molecular composition and energy redistribution. We apply our temperature and abundance retrieval method to the atmospheres of two transiting exoplanets, HD 189733b and HD 209458b, which have the best available Spitzer and HST observations. For HD 189733b, we find efficient day-night redistribution of energy in the atmosphere, and molecular abundance constraints confirming the presence of H2O, CO, CH4, and CO2. For HD 209458b, we confirm and constrain the day-side thermal inversion in an average 1D temperature profile. We also report independent detections of H2_2O, CO, CH4_4 and CO2_2 on the dayside of HD 209458b, based on six-channel Spitzer photometry. We report constraints for HD 189733b due to individual data sets separately; a few key observations are variable in different data sets at similar wavelengths. Moreover, a noticeably strong carbon dioxide absorption in one data set is significantly weaker in another. We must, therefore, acknowledge the strong possibility that the atmosphere is variable, both in its energy redistribution state and in the chemical abundances.Comment: 20 pages in emulateapj format, 11 figures. Final version, after proof correction

    A Framework for Quantifying the Degeneracies of Exoplanet Interior Compositions

    Full text link
    Several transiting super-Earths are expected to be discovered in the coming few years. While tools to model the interior structure of transiting planets exist, inferences about the composition are fraught with ambiguities. We present a framework to quantify how much we can robustly infer about super-Earth and Neptune-size exoplanet interiors from radius and mass measurements. We introduce quaternary diagrams to illustrate the range of possible interior compositions for planets with four layers (iron core, silicate mantles, water layers, and H/He envelopes). We apply our model to CoRoT-7b, GJ 436b, and HAT-P-11b. Interpretation of planets with H/He envelopes is limited by the model uncertainty in the interior temperature, while for CoRoT-7b observational uncertainties dominate. We further find that our planet interior model sharpens the observational constraints on CoRoT-7b's mass and radius, assuming the planet does not contain significant amounts of water or gas. We show that the strength of the limits that can be placed on a super-Earth's composition depends on the planet's density; for similar observational uncertainties, high-density super-Mercuries allow the tightest composition constraints. Finally, we describe how techniques from Bayesian statistics can be used to take into account in a formal way the combined contributions of both theoretical and observational uncertainties to ambiguities in a planet's interior composition. On the whole, with only a mass and radius measurement an exact interior composition cannot be inferred for an exoplanet because the problem is highly underconstrained. Detailed quantitative ranges of plausible compositions, however, can be found.Comment: 20 pages, 10 figures, published in Ap

    On the Unique Solution of Planet and Star Parameters from an Extrasolar Planet Transit Light Curve

    Full text link
    There is a unique solution of the planet and star parameters from a planet transit light curve with two or more transits if the planet has a circular orbit and the light curve is observed in a band pass where limb darkening is negligible. The existence of this unique solution is very useful for current planet transit surveys for several reasons. First, there is an analytic solution that allows a quick parameter estimate, in particular of Rp. Second, the stellar density can be uniquely derived from the transit light curve alone. The stellar density can be used to immediately rule out a giant star (and hence a much larger than planetary companion) and can also be used to put an upper limit on the stellar and planet radius even considering slightly evolved stars. Third, the presence of an additional fully blended star that contaminates an eclipsing system to mimic a planet transit can be largely ruled out from the transit light curve given a spectral type for the central star. Fourth, the period can be estimated from a single-transit light curve and a measured spectral type. All of these applications can be used to select the best planet transit candidates for mass determination by radial velocity follow-up. To use these applications in practice, the photometric precision and time sampling of the light curve must be high (better than 0.005 mag precision and 5 minute time sampling).Comment: 26 pages incl. 11 figs, submitted to Ap

    On the Method to Infer an Atmosphere on a Tidally-Locked Super Earth Exoplanet and Upper limits to GJ 876d

    Full text link
    We develop a method to infer or rule out the presence of an atmosphere on a tidally-locked hot super Earth. The question of atmosphere retention is a fundamental one, especially for planets orbiting M stars due to the star's long-duration active phase and corresponding potential for stellar-induced planetary atmospheric escape and erosion. Tidally-locked planets with no atmosphere are expected to show a Lambertian-like thermal phase curve, causing the combined light of the planet-star system to vary with planet orbital phase. We report Spitzer 8 micron IRAC observations of GJ 876 taken over 32 continuous hours and reaching a relative photometric precision of 3.9e-04 per point for 25.6 s time sampling. This translates to a 3 sigma limit of 5.13e-05 on a planet thermal phase curve amplitude. Despite the almost photon-noise limited data, we are unable to conclusively infer the presence of an atmosphere or rule one out on the non-transiting short-period super Earth GJ 876d. The limiting factor in our observations was the miniscule, monotonic photometric variation of the slightly active host M star, because the partial sine wave due to the planet has a component in common with the stellar linear trend. The proposed method is nevertheless very promising for transiting hot super Earths with the James Webb Space Telescope and is critical for establishing observational constraints for atmospheric escape.Comment: Published in Ap

    Decaying particles and the reionization history of the Universe

    Full text link
    We investigate the possibility that the Universe is reionized by the decay products of heavy particles. In particular we study under which circumstances this decay may produce a significant reionization at high redshift (z20z \simeq 20), as requested by the WMAP result.Extra sources of reionization at high redshifts increase the recombination rate. As a result, the number density of decaying particles required to produce a high level of ionization at z1020z \simeq 10-20 is significantly higher (300\simeq 300 times) than previously estimated. Moreover, the ionization produced by decay particles implies a high optical depth even if the maximum level of ionization ever produced is of the order of 10210^{-2}. In order to match the cosmic microwave background polarization power spectrum, other significant sources of reionization are needed at low redshift. Decaying particles producing a ionization fraction x0.5x \simeq 0.5 at z20z \simeq 20 would imply an optical depth much too high to fit the cosmic microwave background spectra at l30l \ge 30. For decay times tdec<2×1016st_{dec} < 2 \times 10^{16} {\rm s}, recent cosmic microwave background and large scale structure data limits the primordial abundance of the decaying particles to Ωx21×109(1+z)3\Omega_x \le 21 \times 10^{-9} (1+z)^3 at 95 % C.L., and favors long decay times. The data do not favor this reionization model versus the instantaneous reionization one. We also find that the decay of these heavy particles significantly heats up the medium, bringing the expected yy distortion to unobservable levels.Comment: 6 pages, submitted on Sept 14 2003. Accepted for publication in PRL. New version matches the accepted on

    Delayed Recombination

    Full text link
    Under the standard model for recombination of the primeval plasma, and the cold dark matter model for structure formation, recent measurements of the first peak in the angular power spectrum of the cosmic microwave background temperature indicate the spatial geometry of the universe is nearly flat. If sources of Lya resonance radiation, such as stars or active galactic nuclei, were present at z ~ 1000 they would delay recombination, shifting the first peak to larger angular scales, and producing a positive bias in this measure of space curvature. It can be distinguished from space curvature by its suppression of the secondary peaks in the spectrum.Comment: submitted to ApJ
    corecore