20 research outputs found
Determination of Optical Constants for Titan Aerosol-, and Exoplanet and Brown Dwarf Cloud Particle Analogs from the Visible to the Far Infrared
Here we present optical constants covering a broad wavelength range, from the visible to the far infrared, for Titan aerosol analogs produced in the Titan Haze Simulation (THS) experiment at Ames COSmIC facility, as well as other exoplanet-relevant materials
Perspectives on Astrophysics Based on Atomic, Molecular, and Optical (AMO) Techniques
About two generations ago, a large part of AMO science was dominated by
experimental high energy collision studies and perturbative theoretical
methods. Since then, AMO science has undergone a transition and is now
dominated by quantum, ultracold, and ultrafast studies. But in the process, the
field has passed over the complexity that lies between these two extremes. Most
of the Universe resides in this intermediate region. We put forward that the
next frontier for AMO science is to explore the AMO complexity that describes
most of the Cosmos.Comment: White paper submission to the Decadal Assessment and Outlook Report
on Atomic, Molecular, and Optical (AMO) Science (AMO 2020
Perspectives on Astrophysics Based on Atomic, Molecular, and Optical (AMO) Techniques
About two generations ago, a large part of AMO science was dominated by experimental high energy collision studies and perturbative theoretical methods. Since then, AMO science has undergone a transition and is now dominated by quantum, ultracold, and ultrafast studies. But in the process, the field has passed over the complexity that lies between these two extremes. Most of the Universe resides in this intermediate region. We put forward that the next frontier for AMO science is to explore the AMO complexity that describes most of the Cosmos
PDRs4All II: JWST's NIR and MIR imaging view of the Orion Nebula
The JWST has captured the most detailed and sharpest infrared images ever
taken of the inner region of the Orion Nebula, the nearest massive star
formation region, and a prototypical highly irradiated dense photo-dissociation
region (PDR). We investigate the fundamental interaction of far-ultraviolet
photons with molecular clouds. The transitions across the ionization front
(IF), dissociation front (DF), and the molecular cloud are studied at
high-angular resolution. These transitions are relevant to understanding the
effects of radiative feedback from massive stars and the dominant physical and
chemical processes that lead to the IR emission that JWST will detect in many
Galactic and extragalactic environments. Due to the proximity of the Orion
Nebula and the unprecedented angular resolution of JWST, these data reveal that
the molecular cloud borders are hyper structured at small angular scales of
0.1-1" (0.0002-0.002 pc or 40-400 au at 414 pc). A diverse set of features are
observed such as ridges, waves, globules and photoevaporated protoplanetary
disks. At the PDR atomic to molecular transition, several bright features are
detected that are associated with the highly irradiated surroundings of the
dense molecular condensations and embedded young star. Toward the Orion Bar
PDR, a highly sculpted interface is detected with sharp edges and density
increases near the IF and DF. This was predicted by previous modeling studies,
but the fronts were unresolved in most tracers. A complex, structured, and
folded DF surface was traced by the H2 lines. This dataset was used to revisit
the commonly adopted 2D PDR structure of the Orion Bar. JWST provides us with a
complete view of the PDR, all the way from the PDR edge to the substructured
dense region, and this allowed us to determine, in detail, where the emission
of the atomic and molecular lines, aromatic bands, and dust originate
PDRs4All IV. An embarrassment of riches: Aromatic infrared bands in the Orion Bar
(Abridged) Mid-infrared observations of photodissociation regions (PDRs) are
dominated by strong emission features called aromatic infrared bands (AIBs).
The most prominent AIBs are found at 3.3, 6.2, 7.7, 8.6, and 11.2 m. The
most sensitive, highest-resolution infrared spectral imaging data ever taken of
the prototypical PDR, the Orion Bar, have been captured by JWST. We provide an
inventory of the AIBs found in the Orion Bar, along with mid-IR template
spectra from five distinct regions in the Bar: the molecular PDR, the atomic
PDR, and the HII region. We use JWST NIRSpec IFU and MIRI MRS observations of
the Orion Bar from the JWST Early Release Science Program, PDRs4All (ID: 1288).
We extract five template spectra to represent the morphology and environment of
the Orion Bar PDR. The superb sensitivity and the spectral and spatial
resolution of these JWST observations reveal many details of the AIB emission
and enable an improved characterization of their detailed profile shapes and
sub-components. While the spectra are dominated by the well-known AIBs at 3.3,
6.2, 7.7, 8.6, 11.2, and 12.7 m, a wealth of weaker features and
sub-components are present. We report trends in the widths and relative
strengths of AIBs across the five template spectra. These trends yield valuable
insight into the photochemical evolution of PAHs, such as the evolution
responsible for the shift of 11.2 m AIB emission from class B in
the molecular PDR to class A in the PDR surface layers. This
photochemical evolution is driven by the increased importance of FUV processing
in the PDR surface layers, resulting in a "weeding out" of the weakest links of
the PAH family in these layers. For now, these JWST observations are consistent
with a model in which the underlying PAH family is composed of a few species:
the so-called 'grandPAHs'.Comment: 25 pages, 10 figures, to appear in A&
PDRs4All III: JWST's NIR spectroscopic view of the Orion Bar
(Abridged) We investigate the impact of radiative feedback from massive stars
on their natal cloud and focus on the transition from the HII region to the
atomic PDR (crossing the ionisation front (IF)), and the subsequent transition
to the molecular PDR (crossing the dissociation front (DF)). We use
high-resolution near-IR integral field spectroscopic data from NIRSpec on JWST
to observe the Orion Bar PDR as part of the PDRs4All JWST Early Release Science
Program. The NIRSpec data reveal a forest of lines including, but not limited
to, HeI, HI, and CI recombination lines, ionic lines, OI and NI fluorescence
lines, Aromatic Infrared Bands (AIBs including aromatic CH, aliphatic CH, and
their CD counterparts), CO2 ice, pure rotational and ro-vibrational lines from
H2, and ro-vibrational lines HD, CO, and CH+, most of them detected for the
first time towards a PDR. Their spatial distribution resolves the H and He
ionisation structure in the Huygens region, gives insight into the geometry of
the Bar, and confirms the large-scale stratification of PDRs. We observe
numerous smaller scale structures whose typical size decreases with distance
from Ori C and IR lines from CI, if solely arising from radiative recombination
and cascade, reveal very high gas temperatures consistent with the hot
irradiated surface of small-scale dense clumps deep inside the PDR. The H2
lines reveal multiple, prominent filaments which exhibit different
characteristics. This leaves the impression of a "terraced" transition from the
predominantly atomic surface region to the CO-rich molecular zone deeper in.
This study showcases the discovery space created by JWST to further our
understanding of the impact radiation from young stars has on their natal
molecular cloud and proto-planetary disk, which touches on star- and planet
formation as well as galaxy evolution.Comment: 52 pages, 30 figures, submitted to A&
A far-ultraviolet-driven photoevaporation flow observed in a protoplanetary disk
Most low-mass stars form in stellar clusters that also contain massive stars,
which are sources of far-ultraviolet (FUV) radiation. Theoretical models
predict that this FUV radiation produces photo-dissociation regions (PDRs) on
the surfaces of protoplanetary disks around low-mass stars, impacting planet
formation within the disks. We report JWST and Atacama Large Millimetere Array
observations of a FUV-irradiated protoplanetary disk in the Orion Nebula.
Emission lines are detected from the PDR; modelling their kinematics and
excitation allows us to constrain the physical conditions within the gas. We
quantify the mass-loss rate induced by the FUV irradiation, finding it is
sufficient to remove gas from the disk in less than a million years. This is
rapid enough to affect giant planet formation in the disk
Structural Analysis of Titan's Tholins by Ultra-High Resolution Mass Spectrometry
International audienc
Structural Analysis of Titan's Tholins by Ultra-High Resolution Mass Spectrometry
International audienc