69 research outputs found

    Circulating microRNAs as blood-based markers for patients with primary and metastatic breast cancer

    Get PDF
    Introduction: MicroRNAs (miRs) are interesting new diagnostic targets that may provide important insights into the molecular pathogenesis of breast cancer. Here we evaluated, for the first time, the feasibility and clinical utility of circulating miRs as biomarkers for the detection and staging of breast cancer. Methods: The relative concentrations of breast cancer-associated miR10b, miR34a, miR141 and miR155 were measured in the blood serum of 89 patients with primary breast cancer (M0, n = 59) and metastatic disease (M1, n = 30), and 29 healthy women by a TaqMan MicroRNA Assay. Results: The relative concentrations of total RNA (P = 0.0001) and miR155 (P = 0.0001) in serum significantly discriminated M0-patients from healthy women, whereas miR10b (P = 0.005), miR34a (P = 0.001) and miR155 (P = 0.008) discriminated M1-patients from healthy controls. In breast cancer patients, the changes in the levels of total RNA (P = 0.0001), miR10b (P = 0.01), miR34a (P = 0.003) and miR155 (P = 0.002) correlated with the presence of overt metastases. Within the M0-cohort, patients at advanced tumor stages (pT3 to 4) had significantly more total RNA (P = 0.0001) and miR34a (P = 0.01) in their blood than patients at early tumor stages (pT1 to 2). Conclusions: This pilot study provides first evidence that tumor-associated circulating miRs are elevated in the blood of breast cancer patients and associated with tumor progression

    Apoptosis-related deregulation of proteolytic activities and high serum levels of circulating nucleosomes and DNA in blood correlate with breast cancer progression

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>As cell-free circulating DNA exists predominantly as mono- and oligonucleosomes, the focus of the current study was to examine the interplay of circulating nucleosomes, DNA, proteases and caspases in blood of patients with benign and malignant breast diseases.</p> <p>Methods</p> <p>The concentrations of cell-free DNA and nucleosomes as well as the protease and caspase activities were measured in serum of patients with benign breast disease (n = 20), primary breast cancer (M0, n = 31), metastatic breast cancer (M1, n = 32), and healthy individuals (n = 28) by PicoGreen, Cell Death Detection ELISA, Protease Fluorescent Detection Kit and Caspase-Glo<sup>®</sup>3/7 Assay, respectively.</p> <p>Results</p> <p>Patients with benign and malignant tumors had significantly higher levels of circulating nucleic acids in their blood than healthy individuals (p = 0.001, p = 0.0001), whereas these levels could not discriminate between benign and malignant lesions. Our analyses of all serum samples revealed significant correlations of circulating nucleosome with DNA concentrations (p = 0.001), nucleosome concentrations with caspase activities (p = 0.008), and caspase with protease activities (p = 0.0001). High serum levels of protease and caspase activities associated with advanced tumor stages (p = 0.009). Patients with lymph node-positive breast cancer had significantly higher nucleosome levels in their blood than node-negative patients (p = 0.004). The presence of distant metastases associated with a significant increase in serum nucleosome (p = 0.01) and DNA levels (p = 0.04), and protease activities (p = 0.008).</p> <p>Conclusion</p> <p>Our findings demonstrate that high circulating nucleic acid concentrations in blood are no indicators of a malignant breast tumor. However, the observed changes in apoptosis-related deregulation of proteolytic activities along with the elevated serum levels of nucleosomes and DNA in blood are linked to breast cancer progression.</p

    Promoter- and cell-specific epigenetic regulation of CD44, Cyclin D2, GLIPR1 and PTEN by Methyl-CpG binding proteins and histone modifications

    Get PDF
    <p>Abstract</p> <p><it>Background</it></p> <p>The aim of the current study was to analyze the involvement of methyl-CpG binding proteins (MBDs) and histone modifications on the regulation of CD44, Cyclin D2, GLIPR1 and PTEN in different cellular contexts such as the prostate cancer cells DU145 and LNCaP, and the breast cancer cells MCF-7. Since global chromatin changes have been shown to occur in tumours and regions of tumour-associated genes are affected by epigenetic modifications, these may constitute important regulatory mechanisms for the pathogenesis of malignant transformation.</p> <p><it>Methods</it></p> <p>In DU145, LNCaP and MCF-7 cells mRNA expression levels of CD44, Cyclin D2, GLIPR1 and PTEN were determined by quantitative RT-PCR at the basal status as well as after treatment with demethylating agent 5-aza-2'-deoxycytidine and/or histone deacetylase inhibitor Trichostatin A. Furthermore, genomic DNA was bisulfite-converted and sequenced. Chromatin immunoprecipitation was performed with the stimulated and unstimulated cells using antibodies for MBD1, MBD2 and MeCP2 as well as 17 different histone antibodies.</p> <p><it>Results</it></p> <p>Comparison of the different promoters showed that MeCP2 and MBD2a repressed promoter-specifically Cyclin D2 in all cell lines, whereas in MCF-7 cells MeCP2 repressed cell-specifically all methylated promoters. Chromatin immunoprecipitation showed that all methylated promoters associated with at least one MBD. Treatment of the cells by the demethylating agent 5-aza-2'-deoxycytidine (5-aza-CdR) caused dissociation of the MBDs from the promoters. Only MBD1v1 bound and repressed methylation-independently all promoters. Real-time amplification of DNA immunoprecipitated by 17 different antibodies showed a preferential enrichment for methylated lysine of histone H3 (H3K4me1, H3K4me2 and H3K4me3) at the particular promoters. Notably, the silent promoters were associated with unmodified histones which were acetylated following treatment by 5-aza-CdR.</p> <p><it>Conclusions</it></p> <p>This study is one of the first to reveal the histone code and MBD profile at the promoters of CD44, Cyclin D2, GLIPR1 and PTEN in different tumour cells and associated changes after stimulation with methylation inhibitor 5-aza-CdR.</p
    corecore