7,952 research outputs found
Neuropilin-mediated neural crest cell guidance is essential to organise sensory neurons into segmented dorsal root ganglia
The peripheral nervous system (PNS) of higher vertebrates is segmented to align the spinal nerve roots with the vertebrae. This co-patterning is set up during embryogenesis, when vertebrae develop from the sclerotome layer of the metameric somites, and PNS neurons and glia differentiate from neural crest cells (NCCs) that preferentially migrate into the anterior sclerotome halves. Previous analyses of mice deficient in the class 3 semaphorin (SEMA3) receptors neuropilin (NRP) 1 or 2 raised the possibility that each controlled a distinct aspect of trunk NCC migration. We now demonstrate that both pathways act sequentially in distinct NCC subpopulations and thereby cooperate to enforce segmental NCC migration. Specifically, SEMA3A/NRP1 signalling first directs one population of NCCs from the intersomitic path into the sclerotome, and SEMA3F/NRP2 signalling acts subsequently to restrict a second population to the anterior half of the sclerotome. NCC exclusion from either the posterior sclerotome or the intersomitic boundary is sufficient to enforce the separation of neighbouring NCC streams and the segregation of sensory NCC progeny into metameric dorsal root ganglia (DRG). By contrast, the combined loss of both guidance pathways leads to ectopic invasion of the intersomitic furrows and posterior sclerotome halves, disrupting metameric NCC streaming and DRG segmentation
Neuropilin 1 signaling guides neural crest cells to coordinate pathway choice with cell specification
Neural crest cells (NCCs) are highly motile embryonic stem cells that delaminate from the neuroectoderm early during vertebrate embryogenesis and differentiate at defined target sites into various essential cell types. To reach their targets, NCCs follow 1 of 3 sequential pathways that correlate with NCC fate. The firstborn NCCs travel ventrally alongside intersomitic blood vessels to form sympathetic neuronal progenitors near the dorsal aorta, while the lastborn NCCs migrate superficially beneath the epidermis to give rise to melanocytes. Yet, most NCCs enter the somites to form the intermediate wave that gives rise to sympathetic and sensory neurons. Here we show that the repulsive guidance cue SEMA3A and its receptor neuropilin 1 (NRP1) are essential to direct the intermediate wave NCC precursors of peripheral neurons from a default pathway alongside intersomitic blood vessels into the anterior sclerotome. Thus, loss of function for either gene caused excessive intersomitic NCC migration, and this led to ectopic neuronal differentiation along both the anteroposterior and dorsoventral axes of the trunk. The choice of migratory pathway did not affect the specification of NCCs, as they retained their commitment to differentiate into sympathetic or sensory neurons, even when they migrated on an ectopic dorsolateral path that is normally taken by melanocyte precursors. We conclude that NRP1 signaling coordinates pathway choice with NCC fate and therefore confines neuronal differentiation to appropriate locations
Experimental Generation and Observation of Intrinsic Localized Spin Wave Modes in an Antiferromagnet
By driving with a microwave pulse the lowest frequency antiferromagnetic
resonance of the quasi 1-D biaxial antiferromagnet (C_2 H_5 NH_3)_2 CuCl_4 into
an unstable region intrinsic localized spin waves have been generated and
detected in the spin wave gap. These findings are consistent with the
prediction that nonlinearity plus lattice discreteness can lead to localized
excitations with dimensions comparable to the lattice constant.Comment: 10 pages, 4 figures, accepted for publication in Physical Review
Letter
Transnational venue management corporations and local embeddedness: A case study on the Mercedes-Benz Arena in Shanghai, China
Purpose
The case of the Mercedes-Benz Arena in Shanghai, China raises an important issue with respect to transnational venue management corporations embedding and operating in foreign markets. The purpose of this paper is to examine how Anschutz Entertainment Group (AEG) has implemented social embeddedness strategy to influence the management structure and enhance operational performance of the Mercedes-Benz Arena.
Design/methodology/approach
A case study approach was chosen to examine the social embeddedness of AEG through the Mercedes-Benz Arena in Shanghai. An in-depth interview was conducted with John Cappo, the President and CEO of AEG China, in April 2016. In addition, the relative news and interviews of leaders from AEG and AEG China over the past ten years was also collected. Qualitative content analysis of the data was conducted through a coding approach. All the materials were coded into three main categories based on three aspects of social embeddedness: local stakeholder relations, reputation and trust-building, cultural and institutional adaptation.
Findings
AEG has demonstrated how a transnational venue management corporation can successfully integrate social embeddedness strategy with the management structure and operational procedures of the Mercedes-Benz Arena in three ways. First is through the relationship between AEG and its partners in the joint venture, OPG in terms of the enforcement of the contract, the clear division of responsibilities, and the mutual understanding and use of relationship building. Second is the relationship between AEG and the local government in Shanghai. Third was adapting the structures of AEG to fit within local culture and institutional contexts.
Originality/value
The unique multi-stakeholder relationship inherent to venue management in China raises important questions with respect to transnational venue management corporations operating in foreign markets. The adaptation to the local context, as a moderating factor to the institutional exposure of a venue management company involves more challenging obstacles for non-local firms, compared to firms which are familiar with their institutional context. Understanding the key solutions in building relationships and trust with partners in joint venture and local government, as well as the key methods to adopt in local contexts, have applications across any number of sport industries.
</jats:sec
Image interpolation using Shearlet based iterative refinement
This paper proposes an image interpolation algorithm exploiting sparse
representation for natural images. It involves three main steps: (a) obtaining
an initial estimate of the high resolution image using linear methods like FIR
filtering, (b) promoting sparsity in a selected dictionary through iterative
thresholding, and (c) extracting high frequency information from the
approximation to refine the initial estimate. For the sparse modeling, a
shearlet dictionary is chosen to yield a multiscale directional representation.
The proposed algorithm is compared to several state-of-the-art methods to
assess its objective as well as subjective performance. Compared to the cubic
spline interpolation method, an average PSNR gain of around 0.8 dB is observed
over a dataset of 200 images
Transcriptome profiling reveals expression signatures of cranial neural crest cells arising from different axial levels
Background: Cranial neural crest cells (NCCs) are a unique embryonic cell type which give rise to a diverse array of derivatives extending from neurons and glia through to bone and cartilage. Depending on their point of origin along the antero-posterior axis cranial NCCs are rapidly sorted into distinct migratory streams that give rise to axial specific structures. These migratory streams mirror the underlying segmentation of the brain with NCCs exiting the diencephalon and midbrain following distinct paths compared to those exiting the hindbrain rhombomeres (r). The genetic landscape of cranial NCCs arising at different axial levels remains unknown. Results: Here we have used RNA sequencing to uncover the transcriptional profiles of mouse cranial NCCs arising at different axial levels. Whole transcriptome analysis identified over 120 transcripts differentially expressed between NCCs arising anterior to r3 (referred to as r1-r2 migratory stream for simplicity) and the r4 migratory stream. Eight of the genes differentially expressed between these populations were validated by RT-PCR with 2 being further validated by in situ hybridisation. We also explored the expression of the Neuropilins (Nrp1 and Nrp2) and their co-receptors and show that the A-type Plexins are differentially expressed in different cranial NCC streams. Conclusions: Our analyses identify a large number of genes differentially regulated between cranial NCCs arising at different axial levels. This data provides a comprehensive description of the genetic landscape driving diversity of distinct cranial NCC streams and provides novel insight into the regulatory networks controlling the formation of specific skeletal elements and the mechanisms promoting migration along different paths.Rachael Lumb, Sam Buckberry, Genevieve Secker, David Lawrence and Quenten Schwar
Neuropilin 1 and 2 control cranial gangliogenesis and axon guidance through neural crest cells
Neuropilin (NRP) receptors and their class 3 semaphorin (SEMA3) ligands play well-established roles in axon guidance, with loss of NRP1, NRP2, SEMA3A or SEMA3F causing defasciculation and errors in growth cone guidance of peripherally projecting nerves. Here we report that loss of NRP1 or NRP2 also impairs sensory neuron positioning in the mouse head, and that this defect is a consequence of inappropriate cranial neural crest cell migration. Specifically, neural crest cells move into the normally crest-free territory between the trigeminal and hyoid neural crest streams and recruit sensory neurons from the otic placode; these ectopic neurons then extend axons between the trigeminal and facioacoustic ganglia. Moreover, we found that NRP1 and NRP2 cooperate to guide cranial neural crest cells and position sensory neurons; thus, in the absence of SEMA3/NRP signalling, the segmentation of the cranial nervous system is lost. We conclude that neuropilins play multiple roles in the sensory nervous system by directing cranial neural crest cells, positioning sensory neurons and organising their axonal projections
- …