5 research outputs found

    Of Keeping and Tipping the Balance: Host Regulation and Viral Modulation of IRF3-Dependent IFNB1 Expression

    Get PDF
    The type I interferon (IFN) response is a principal component of our immune system that allows to counter a viral attack immediately upon viral entry into host cells. Upon engagement of aberrantly localised nucleic acids, germline-encoded pattern recognition receptors convey their find via a signalling cascade to prompt kinase-mediated activation of a specific set of five transcription factors. Within the nucleus, the coordinated interaction of these dimeric transcription factors with coactivators and the basal RNA transcription machinery is required to access the gene encoding the type I IFN IFNβ (IFNB1). Virus-induced release of IFNβ then induces the antiviral state of the system and mediates further mechanisms for defence. Due to its key role during the induction of the initial IFN response, the activity of the transcription factor interferon regulatory factor 3 (IRF3) is tightly regulated by the host and fiercely targeted by viral proteins at all conceivable levels. In this review, we will revisit the steps enabling the trans-activating potential of IRF3 after its activation and the subsequent assembly of the multi-protein complex at the IFNβ enhancer that controls gene expression. Further, we will inspect the regulatory mechanisms of these steps imposed by the host cell and present the manifold strategies viruses have evolved to intervene with IFNβ transcription downstream of IRF3 activation in order to secure establishment of a productive infection

    Human Norovirus NS3 has RNA Helicase and Chaperoning Activities

    Get PDF
    RNA remodeling proteins, including RNA helicases and chaperones, act to remodel RNA structures and/or protein-RNA interactions, and are required for all processes involving RNAs. Although many viruses encode RNA helicases and chaperones, their in vitro activities and their roles in infected cells largely remain elusive. Noroviruses are a diverse group of positive-stranded RNA viruses in the family Caliciviridae, and constitute a significant and potentially fatal threat to human health. Here we report that protein NS3 encoded by human norovirus has both ATP-dependent RNA helicase activity that unwinds RNA helices and ATP-independent RNA chaperoning activity that can remodel structured RNAs and facilitate strand-annealing. Moreover, NS3 can facilitate viral RNA synthesis in vitro by norovirus polymerase. NS3 may therefore play an important role in norovirus RNA replication. Lastly, we demonstrate that the RNA remodeling activity of NS3 is inhibited by guanidine hydrochloride, an FDA-approved compound and, more importantly, that it reduces the replication of norovirus replicon in cultured human cells. Altogether, these findings are the first to demonstrate the presence of RNA remodeling activities encoded by Caliciviridae, and highlight the functional significance of NS3 in noroviral life cycle

    Of Keeping and Tipping the Balance: Host Regulation and Viral Modulation of IRF3-Dependent Expression.

    Get PDF
    The type I interferon (IFN) response is a principal component of our immune system that allows to counter a viral attack immediately upon viral entry into host cells. Upon engagement of aberrantly localised nucleic acids, germline-encoded pattern recognition receptors convey their find via a signalling cascade to prompt kinase-mediated activation of a specific set of five transcription factors. Within the nucleus, the coordinated interaction of these dimeric transcription factors with coactivators and the basal RNA transcription machinery is required to access the gene encoding the type I IFN IFNβ (IFNB1). Virus-induced release of IFNβ then induces the antiviral state of the system and mediates further mechanisms for defence. Due to its key role during the induction of the initial IFN response, the activity of the transcription factor interferon regulatory factor 3 (IRF3) is tightly regulated by the host and fiercely targeted by viral proteins at all conceivable levels. In this review, we will revisit the steps enabling the trans-activating potential of IRF3 after its activation and the subsequent assembly of the multi-protein complex at the IFNβ enhancer that controls gene expression. Further, we will inspect the regulatory mechanisms of these steps imposed by the host cell and present the manifold strategies viruses have evolved to intervene with IFNβ transcription downstream of IRF3 activation in order to secure establishment of a productive infection

    The Cytomegalovirus M35 Protein Directly Binds to the Interferon-β Enhancer and Modulates Transcription of Ifnb1 and Other IRF3-Driven Genes

    No full text
    Induction of type I interferon (IFN) gene expression is among the first lines of cellular defense a virus encounters during primary infection. We previously identified the tegument protein M35 of murine cytomegalovirus (MCMV) as an essential antagonist of this antiviral system, showing that M35 interferes with type I IFN induction downstream of pattern-recognition receptor (PRR) activation. Here, we report structural and mechanistic details of M35’s function. Determination of M35’s crystal structure combined with reverse genetics revealed that homodimerization is a key feature for M35’s immunomodulatory activity. In electrophoretic mobility shift assays (EMSAs), purified M35 protein specifically bound to the regulatory DNA element that governs transcription of the first type I IFN gene induced in nonimmune cells, Ifnb1. DNA-binding sites of M35 overlapped with the recognition elements of interferon regulatory factor 3 (IRF3), a key transcription factor activated by PRR signaling. Chromatin immunoprecipitation (ChIP) showed reduced binding of IRF3 to the host Ifnb1 promoter in the presence of M35. We furthermore defined the IRF3-dependent and the type I IFN signaling-responsive genes in murine fibroblasts by RNA sequencing of metabolically labeled transcripts (SLAM-seq) and assessed M35’s global effect on gene expression. Stable expression of M35 broadly influenced the transcriptome in untreated cells and specifically downregulated basal expression of IRF3-dependent genes. During MCMV infection, M35 impaired expression of IRF3-responsive genes aside of Ifnb1. Our results suggest that M35-DNA binding directly antagonizes gene induction mediated by IRF3 and impairs the antiviral response more broadly than formerly recognized
    corecore