61 research outputs found
Study of Interplanetary Magnetic Field with Ground State Alignment
We demonstrate a new way of studying interplanetary magnetic field -- Ground
State Alignment (GSA). Instead of sending thousands of space probes, GSA allows
magnetic mapping with any ground telescope facilities equipped with
spectropolarimeter. The polarization of spectral lines that are pumped by the
anisotropic radiation from the Sun is influenced by the magnetic realignment,
which happens for magnetic field (<1G). As a result, the linear polarization
becomes an excellent tracer of the embedded magnetic field. The method is
illustrated by our synthetic observations of the Jupiter's Io and comet Halley.
Polarization at each point was constructed according to the local magnetic
field detected by spacecrafts. Both spatial and temporal variations of
turbulent magnetic field can be traced with this technique as well. The
influence of magnetic field on the polarization of scattered light is discussed
in detail. For remote regions like the IBEX ribbons discovered at the boundary
of interstellar medium, GSA provides a unique diagnostics of magnetic field.Comment: 11 pages, 19 figures, published in Astrophysics and Space Scienc
Automated Coronal Hole Detection using Local Intensity Thresholding Techniques
We identify coronal holes using a histogram-based intensity thresholding
technique and compare their properties to fast solar wind streams at three
different points in the heliosphere. The thresholding technique was tested on
EUV and X-ray images obtained using instruments onboard STEREO, SOHO and
Hinode. The full-disk images were transformed into Lambert equal-area
projection maps and partitioned into a series of overlapping sub-images from
which local histograms were extracted. The histograms were used to determine
the threshold for the low intensity regions, which were then classified as
coronal holes or filaments using magnetograms from the SOHO/MDI. For all three
instruments, the local thresholding algorithm was found to successfully
determine coronal hole boundaries in a consistent manner. Coronal hole
properties extracted using the segmentation algorithm were then compared with
in situ measurements of the solar wind at 1 AU from ACE and STEREO. Our results
indicate that flux tubes rooted in coronal holes expand super-radially within 1
AU and that larger (smaller) coronal holes result in longer (shorter) duration
high-speed solar wind streams
Revising the Local Bubble Model due to Solar Wind Charge Exchange X-ray Emission
The hot Local Bubble surrounding the solar neighborhood has been primarily
studied through observations of its soft X-ray emission. The measurements were
obtained by attributing all of the observed local soft X-rays to the bubble.
However, mounting evidence shows that the heliosphere also produces diffuse
X-rays. The source is solar wind ions that have received an electron from
another atom. The presence of this alternate explanation for locally produced
diffuse X-rays calls into question the existence and character of the Local
Bubble. This article addresses these questions. It reviews the literature on
solar wind charge exchange (SWCX) X-ray production, finding that SWCX accounts
for roughly half of the observed local 1/4 keV X-rays found at low latitudes.
This article also makes predictions for the heliospheric O VI column density
and intensity, finding them to be smaller than the observational error bars.
Evidence for the continued belief that the Local Bubble contains hot gas
includes the remaining local 1/4 keV intensity, the observed local O VI column
density, and the need to fill the local region with some sort of plasma. If the
true Local Bubble is half as bright as previously thought, then its electron
density and thermal pressure are 1/square-root(2) as great as previously
thought, and its energy requirements and emission measure are 1/2 as great as
previously thought. These adjustments can be accommodated easily, and, in fact,
bring the Local Bubble's pressure more in line with that of the adjacent
material. Suggestions for future work are made.Comment: 9 pages, refereed, accepted for publication in the proceedings of the
"From the Outer Heliosphere to the Local Bubble: Comparisons of New
Observations with Theory" conference and in Space Science Review
4pi Models of CMEs and ICMEs
Coronal mass ejections (CMEs), which dynamically connect the solar surface to
the far reaches of interplanetary space, represent a major anifestation of
solar activity. They are not only of principal interest but also play a pivotal
role in the context of space weather predictions. The steady improvement of
both numerical methods and computational resources during recent years has
allowed for the creation of increasingly realistic models of interplanetary
CMEs (ICMEs), which can now be compared to high-quality observational data from
various space-bound missions. This review discusses existing models of CMEs,
characterizing them by scientific aim and scope, CME initiation method, and
physical effects included, thereby stressing the importance of fully 3-D
('4pi') spatial coverage.Comment: 14 pages plus references. Comments welcome. Accepted for publication
in Solar Physics (SUN-360 topical issue
Origins of the Ambient Solar Wind: Implications for Space Weather
The Sun's outer atmosphere is heated to temperatures of millions of degrees,
and solar plasma flows out into interplanetary space at supersonic speeds. This
paper reviews our current understanding of these interrelated problems: coronal
heating and the acceleration of the ambient solar wind. We also discuss where
the community stands in its ability to forecast how variations in the solar
wind (i.e., fast and slow wind streams) impact the Earth. Although the last few
decades have seen significant progress in observations and modeling, we still
do not have a complete understanding of the relevant physical processes, nor do
we have a quantitatively precise census of which coronal structures contribute
to specific types of solar wind. Fast streams are known to be connected to the
central regions of large coronal holes. Slow streams, however, appear to come
from a wide range of sources, including streamers, pseudostreamers, coronal
loops, active regions, and coronal hole boundaries. Complicating our
understanding even more is the fact that processes such as turbulence,
stream-stream interactions, and Coulomb collisions can make it difficult to
unambiguously map a parcel measured at 1 AU back down to its coronal source. We
also review recent progress -- in theoretical modeling, observational data
analysis, and forecasting techniques that sit at the interface between data and
theory -- that gives us hope that the above problems are indeed solvable.Comment: Accepted for publication in Space Science Reviews. Special issue
connected with a 2016 ISSI workshop on "The Scientific Foundations of Space
Weather." 44 pages, 9 figure
The Structure of a Rigorously Conserved RNA Element within the SARS Virus Genome
We have solved the three-dimensional crystal structure of the stem-loop II motif (s2m) RNA element of the SARS virus genome to 2.7-Å resolution. SARS and related coronaviruses and astroviruses all possess a motif at the 3′ end of their RNA genomes, called the s2m, whose pathogenic importance is inferred from its rigorous sequence conservation in an otherwise rapidly mutable RNA genome. We find that this extreme conservation is clearly explained by the requirement to form a highly structured RNA whose unique tertiary structure includes a sharp 90° kink of the helix axis and several novel longer-range tertiary interactions. The tertiary base interactions create a tunnel that runs perpendicular to the main helical axis whose interior is negatively charged and binds two magnesium ions. These unusual features likely form interaction surfaces with conserved host cell components or other reactive sites required for virus function. Based on its conservation in viral pathogen genomes and its absence in the human genome, we suggest that these unusual structural features in the s2m RNA element are attractive targets for the design of anti-viral therapeutic agents. Structural genomics has sought to deduce protein function based on three-dimensional homology. Here we have extended this approach to RNA by proposing potential functions for a rigorously conserved set of RNA tertiary structural interactions that occur within the SARS RNA genome itself. Based on tertiary structural comparisons, we propose the s2m RNA binds one or more proteins possessing an oligomer-binding-like fold, and we suggest a possible mechanism for SARS viral RNA hijacking of host protein synthesis, both based upon observed s2m RNA macromolecular mimicry of a relevant ribosomal RNA fold
- …