2 research outputs found

    AiiDAlab - an ecosystem for developing, executing, and sharing scientific workflows

    No full text
    Cloud platforms allow users to execute tasks directly from their web browser and are a key enabling technology not only for commerce but also for computational science. Research software is often developed by scientists with limited experience in (and time for) user interface design, which can make research software difficult to install and use for novices. When combined with the increasing complexity of scientific workflows (involving many steps and software packages), setting up a computational research environment becomes a major entry barrier. AiiDAlab is a web platform that enables computational scientists to package scientific workflows and computational environments and share them with their collaborators and peers. By leveraging the AiiDA workflow manager and its plugin ecosystem, developers get access to a growing range of simulation codes through a python API, coupled with automatic provenance tracking of simulations for full reproducibility. Computational workflows can be bundled together with user-friendly graphical interfaces and made available through the AiiDAlab app store. Being fully compatible with open-science principles, AiiDAlab provides a complete infrastructure for automated workflows and provenance tracking, where incorporating new capabilities becomes intuitive, requiring only Python knowledge

    The atomic simulation environment-a Python library for working with atoms

    No full text
    The atomic simulation environment (ASE) is a software package written in the Python programming language with the aim of setting up, steering, and analyzing atomistic simulations. In ASE, tasks are fully scripted in Python. The powerful syntax of Python combined with the NumPy array library make it possible to perform very complex simulation tasks. For example, a sequence of calculations may be performed with the use of a simple 'for-loop' construction. Calculations of energy, forces, stresses and other quantities are performed through interfaces to many external electronic structure codes or force fields using a uniform interface. On top of this calculator interface, ASE provides modules for performing many standard simulation tasks such as structure optimization, molecular dynamics, handling of constraints and performing nudged elastic band calculations
    corecore