978 research outputs found

    Combining Stereo Disparity and Optical Flow for Basic Scene Flow

    Full text link
    Scene flow is a description of real world motion in 3D that contains more information than optical flow. Because of its complexity there exists no applicable variant for real-time scene flow estimation in an automotive or commercial vehicle context that is sufficiently robust and accurate. Therefore, many applications estimate the 2D optical flow instead. In this paper, we examine the combination of top-performing state-of-the-art optical flow and stereo disparity algorithms in order to achieve a basic scene flow. On the public KITTI Scene Flow Benchmark we demonstrate the reasonable accuracy of the combination approach and show its speed in computation.Comment: Commercial Vehicle Technology Symposium (CVTS), 201

    SceneFlowFields: Dense Interpolation of Sparse Scene Flow Correspondences

    Full text link
    While most scene flow methods use either variational optimization or a strong rigid motion assumption, we show for the first time that scene flow can also be estimated by dense interpolation of sparse matches. To this end, we find sparse matches across two stereo image pairs that are detected without any prior regularization and perform dense interpolation preserving geometric and motion boundaries by using edge information. A few iterations of variational energy minimization are performed to refine our results, which are thoroughly evaluated on the KITTI benchmark and additionally compared to state-of-the-art on MPI Sintel. For application in an automotive context, we further show that an optional ego-motion model helps to boost performance and blends smoothly into our approach to produce a segmentation of the scene into static and dynamic parts.Comment: IEEE Winter Conference on Applications of Computer Vision (WACV), 201

    Contour-based classification of video objects

    Full text link
    The recognition of objects that appear in a video sequence is an essential aspect of any video content analysis system. We present an approach which classifies a segmented video object base don its appearance in successive video frames. The classification is performed by matching curvature features of the contours of these object views to a database containing preprocessed views of prototypical objects using a modified curvature scale space technique. By integrating the result of an umber of successive frames and by using the modified curvature scale space technique as an efficient representation of object contours, our approach enables the robust, tolerant and rapid object classification of video objects
    corecore