539 research outputs found

    Oscillatons formed by non linear gravity

    Full text link
    Oscillatons are solutions of the coupled Einstein-Klein-Gordon (EKG) equations that are globally regular and asymptotically flat. By means of a Legendre transformation we are able to visualize the behaviour of the corresponding objects in non-linear gravity where the scalar field has been absorbed by means of the conformal mapping.Comment: Revtex file, 6 pages, 3 eps figure; matches version published in PR

    Neutrino-nucleus coherent scattering as a probe of neutron density distributions

    Get PDF
    Neutrino-nucleus coherent elastic scattering provides a theoretically appealing way to measure the neutron part of nuclear form factors. Using an expansion of form factors into moments, we show that neutrinos from stopped pions can probe not only the second moment of the form factor (the neutron radius) but also the fourth moment. Using simple Monte Carlo techniques for argon, germanium, and xenon detectors of 3.5 tonnes, 1.5 tonnes, and 300 kg, respectively, we show that the neutron radii can be found with an uncertainty of a few percent when near a neutrino flux of 3×1073\times10^{7} neutrinos/cm2^{2}/s. If the normalization of the neutrino flux is known independently, one can determine the moments accurately enough to discriminate among the predictions of various nuclear energy functionals.Comment: 10 pages, 5 figure

    Fermionic Superfluidity with Imbalanced Spin Populations and the Quantum Phase Transition to the Normal State

    Full text link
    Whether it occurs in superconductors, helium-3 or inside a neutron star, fermionic superfluidity requires pairing of fermions, particles with half-integer spin. For an equal mixture of two states of fermions ("spin up" and "spin down"), pairing can be complete and the entire system will become superfluid. When the two populations of fermions are unequal, not every particle can find a partner. Will the system nevertheless stay superfluid? Here we study this intriguing question in an unequal mixture of strongly interacting ultracold fermionic atoms. The superfluid region vs population imbalance is mapped out by employing two complementary indicators: The presence or absence of vortices in a rotating mixture, as well as the fraction of condensed fermion pairs in the gas. Due to the strong interactions near a Feshbach resonance, the superfluid state is remarkably stable in response to population imbalance. The final breakdown of superfluidity marks a new quantum phase transition, the Pauli limit of superfluidity.Comment: 15 pages, 5 figure

    Pairing without Superfluidity: The Ground State of an Imbalanced Fermi Mixture

    Full text link
    Radio-frequency spectroscopy is used to study pairing in the normal and superfluid phases of a strongly interacting Fermi gas with imbalanced spin populations. At high spin imbalances the system does not become superfluid even at zero temperature. In this normal phase full pairing of the minority atoms is observed. This demonstrates that mismatched Fermi surfaces do not prevent pairing but can quench the superfluid state, thus realizing a system of fermion pairs that do not condense even at the lowest temperature

    Axially deformed solution of the Skyrme-Hartree-Fock-Bogolyubov equations using the transformed harmonic oscillator basis (III) hfbtho (v3.00): a new version of the program

    Full text link
    We describe the new version 3.00 of the code HFBTHO that solves the nuclear Hartree-Fock (HF) or Hartree-Fock-Bogolyubov (HFB) problem by using the cylindrical transformed deformed harmonic oscillator basis. In the new version, we have implemented the following features: (i) the full Gogny force in both particle-hole and particle-particle channels, (ii) the calculation of the nuclear collective inertia at the perturbative cranking approximation, (iii) the calculation of fission fragment charge, mass and deformations based on the determination of the neck (iv) the regularization of zero-range pairing forces (v) the calculation of localization functions (vi)MPI interface for large-scale mass table calculations.Comment: 29 pages, 3 figures, 4 tables; Submitted to Computer Physics Communication

    Observation of Feshbach resonances between two different atomic species

    Full text link
    We have observed three Feshbach resonances in collisions between lithium-6 and sodium-23 atoms. The resonances were identified as narrow loss features when the magnetic field was varied. The molecular states causing these resonances have been identified, and additional lithium-sodium resonances are predicted. These resonances will allow the study of degenerate Bose-Fermi mixtures with adjustable interactions, and could be used to generate ultracold heteronuclear molecules

    Tomographic RF Spectroscopy of a Trapped Fermi Gas at Unitarity

    Full text link
    We present spatially resolved radio-frequency spectroscopy of a trapped Fermi gas with resonant interactions and observe a spectral gap at low temperatures. The spatial distribution of the spectral response of the trapped gas is obtained using in situ phase-contrast imaging and 3D image reconstruction. At the lowest temperature, the homogeneous rf spectrum shows an asymmetric excitation line shape with a peak at 0.48(4)ϵF\epsilon_F with respect to the free atomic line, where ϵF\epsilon_F is the local Fermi energy

    Tensor hypercontraction: A universal technique for the resolution of matrix elements of local, finite-range NN-body potentials in many-body quantum problems

    Full text link
    Configuration-space matrix elements of N-body potentials arise naturally and ubiquitously in the Ritz-Galerkin solution of many-body quantum problems. For the common specialization of local, finite-range potentials, we develop the eXact Tensor HyperContraction (X-THC) method, which provides a quantized renormalization of the coordinate-space form of the N-body potential, allowing for a highly separable tensor factorization of the configuration-space matrix elements. This representation allows for substantial computational savings in chemical, atomic, and nuclear physics simulations, particularly with respect to difficult "exchange-like" contractions.Comment: Third version of the manuscript after referee's comments. In press in PRL. Main text: 4 pages, 2 figures, 1 table; Supplemental material (also included): 14 pages, 2 figures, 2 table

    Formation Time of a Fermion Pair Condensate

    Full text link
    The formation time of a condensate of fermionic atom pairs close to a Feshbach resonance was studied. This was done using a phase-shift method in which the delayed response of the many-body system to a modulation of the interaction strength was recorded. The observable was the fraction of condensed molecules in the cloud after a rapid magnetic field ramp across the Feshbach resonance. The measured response time was slow compared to the rapid ramp, which provides final proof that the molecular condensates reflect the presence of fermion pair condensates before the ramp.Comment: 5 pages, 4 figure
    corecore