155 research outputs found

    Infrared Fixed Point Structure in Minimal Supersymmetric Standard Model with Baryon and Lepton Number Violation

    Get PDF
    We study in detail the renomalization group evolution of Yukawa couplings and soft supersymmetry breaking trilinear couplings in the minimal supersymmetric standard model with baryon and lepton number violation. We obtain the exact solutions of these equations in a closed form, and then depict the infrared fixed point structure of the third generation Yukawa couplings and the highest generation baryon and lepton number violating couplings. Approximate analytical solutions for these Yukawa couplings and baryon and lepton number violating couplings, and the soft supersymmetry breaking couplings are obtained in terms of their initial values at the unification scale. We then numerically study the infrared fixed surfaces of the model, and illustrate the approach to the fixed points.Comment: 16 pages REVTeX, figures embedded as epsfigs, replaced with version to appear in Physical Review D, minor typographical errors eliminated and references reordered, figures correcte

    Infra-red fixed points in supersymmetry

    Get PDF
    Model independent constraints on supersymmetric models emerge when certain couplings are drawn towards their infra-red (quasi) fixed points in the course of their renormalization group evolution. The general principles are first reviewed and the conclusions for some recent studies of theories with R-parity and baryon and lepton number violations are summarized.Comment: 5 pages Latex with 2 figures embedded as eps files Talk given at WHEPP6, Chennai, India, January 3-15, 2000, to appear in special issue of Praman

    Infrared quasi-fixed solutions in the NMSSM

    Get PDF
    The considerable part of the parameter space in the MSSM corresponding to the infrared quasi fixed point scenario is almost excluded by LEP II bounds on the lightest Higgs boson mass. In the NMSSM the mass of the lightest Higgs boson reaches its maximum value in the strong Yukawa coupling limit when Yukawa couplings are essentially larger than gauge ones at the Grand Unification scale. In this limit the solutions of the renormalisation group equations are attracted to the infrared and Hill type effective fixed lines or surfaces in the Yukawa coupling parameter space. They are concentrated in the vicinity of quasi fixed points for Yi(0)Y_i(0)\to\infty. However the solutions are attracted to such points rather weakly. For this reason when all Yi(0)1Y_i(0)\sim 1 the solutions of the renormalisation group equations are gathered near a line in the Hill type effective surface. In the paper the approximate solutions for the NMSSM Yukawa couplings are given. The possibility of bb--quark and τ\tau--lepton Yukawa coupling unification at the scale MXM_{X} is also discussed.Comment: 32 pages, 8 figures included, LaTeX 2

    Asymptotically Free Non-Abelian Gauge Theories With Fermions and Scalars As Alternatives to QCD

    Get PDF
    In this paper we construct non-Abelian gauge theories with fermions and scalars that nevertheless possess asymptotic freedom.The scalars are taken to be in a chiral multiplet transforming as (2,2)(2,2) under SU(2)LSU(2)RSU(2)_L\otimes SU(2)_R and transforming as singlets under the colour SU(3) group. We consider two distinct scenarios, one in which the additional scalars are light and another in which they are heavier than half the Z-boson mass. It is shown that asymptotic freedom is obtained without requiring that all additional couplings keep fixed ratios with each other. It is also shown that both scenarios can not be ruled out by what are considered standard tests of QCD like R- parameter, g-2 for muons or deep inelastic phenomena. The light mass scenario is however ruled out by high precision Z-width data (and only by that one data).The heavy mass scenario is still viable and is shown to naturally pass the test of flavour changing neutral currents. It also is not ruled out by precision electroweak oblique parameters. Many distinctive experimental signatures of these models are also discussed.Comment: 37 pages in LATEX with 10 fig

    A Search for Instantons at HERA

    Get PDF
    A search for QCD instanton (I) induced events in deep-inelastic scattering (DIS) at HERA is presented in the kinematic range of low x and low Q^2. After cutting into three characteristic variables for I-induced events yielding a maximum suppression of standard DIS background to the 0.1% level while still preserving 10% of the I-induced events, 549 data events are found while 363^{+22}_{-26} (CDM) and 435^{+36}_{-22} (MEPS) standard DIS events are expected. More events than expected by the standard DIS Monte Carlo models are found in the data. However, the systematic uncertainty between the two different models is of the order of the expected signal, so that a discovery of instantons can not be claimed. An outlook is given on the prospect to search for QCD instanton events using a discriminant based on range searching in the kinematical region Q^2\gtrsim100\GeV^2 where the I-theory makes safer predictions and the QCD Monte Carlos are expected to better describe the inclusive data.Comment: Invited talk given at the Ringberg Workshop on HERA Physics on June 19th, 2001 on behalf of the H1 collaboratio

    Quasi-fixed point scenario in the modified NMSSM

    Get PDF
    The simplest extension of the MSSM that does not contradict LEP II experimental bound on the lightest Higgs boson mass at tanβ1\tan\beta\sim 1 is the modified Next-to-Minimal Supersymmetric Standard Model (MNSSM). We investigate the renormalization of Yukawa couplings and soft SUSY breaking terms in this model. The possibility of bb-quark and τ\tau-lepton Yukawa coupling unification at the Grand Unification scale MXM_X is studied. The particle spectrum is analysed in the vicinity of the quasi-fixed point where the solutions of renormalization group equations are concentrated at the electroweak scale.Comment: 19 pages, 3 figures, LaTeX2

    Higgs bosons in the simplest SUSY models

    Get PDF
    Nowadays in the MSSM the moderate values of tanβ\tan\beta are almost excluded by LEP II lower bound on the lightest Higgs boson mass. In the Next-to-Minimal Supersymmetric Standard Model the theoretical upper bound on it increases and reaches maximal value in the strong Yukawa coupling limit when all solutions of renormalization group equations are concentrated near the quasi-fixed point. For calculation of Higgs boson spectrum the perturbation theory method can be applied. We investigate the particle spectrum in the framework of the modified NMSSM which leads to the self-consistent solution in the strong Yukawa coupling limit. This model allows one to get mh125m_h\sim 125 GeV at values of tanβ1.9\tan\beta\ge 1.9. In the investigated model the lightest Higgs boson mass does not exceed 130.5±3.5130.5\pm 3.5 GeV. The upper bound on the lightest CP-even Higgs boson mass in more complicated supersymmetric models is also discussed.Comment: 27 pages, 5 figures included, LaTeX 2e. Plenary talk at the Conference of RAS Nuclear Physics Department 2000 in ITEP, Moscow, Russia; to appear in Phys. Atom. Nuc

    Diphoton Production at Hadron Colliders and New Contact Interactions

    Full text link
    We explore the capability of the Tevatron and LHC to place limits on the possible existence of flavor-independent qqˉγγq \bar q \gamma\gamma contact interactions which can lead to an excess of diphoton events with large invariant masses. Assuming no departure from the Standard Model is observed, we show that the Tevatron will eventually be able to place a lower bound of 0.5-0.6 TeV on the scale associated with this new contact interaction. At the LHC, scales as large as 3-6 TeV may be probed with suitable detector cuts and an integrated luminosity of 100fb1100 fb^{-1}.Comment: LaTex, 12pages plus 5 figures(available on request), SLAC-PUB-657

    Nonminimal Supersymmetric Standard Model with Baryon and Lepton Number Violation

    Get PDF
    We carry out a comprehensive analysis of the nonminimal supersymmetric standard model (NMSSM) with baryon and lepton number violation. We catalogue the baryon and lepton number violating dimension four and five operators of the model. We then study the renormalization group evolution and infrared stable fixed points of the Yukawa couplings and the soft supersymmetry breaking trilinear couplings of this model with baryon and lepton number (and R-parity) violation involving the heaviest generations. We show analytically that in the Yukawa sector of the NMSSM there is only one infrared stable fixed point. This corresponds to a non-trivial fixed point for the top-, bottom-quark Yukawa couplings and the BB violating coupling λ233\lambda_{233}'', and a trivial one for all other couplings. All other possible fixed points are either unphysical or unstable in the infrared region. We also carry out an analysis of the renormalization group equations for the soft supersymmetry breaking trilinear couplings, and determine the corresponding fixed points for these couplings. We then study the quasi-fixed point behaviour, both of the third generation Yukawa couplings and the baryon number violating coupling, and those of the soft supersymmetry breaking trilinear couplings. From the analysis of the fixed point behaviour, we obtain upper and lower bounds on the baryon number violating coupling λ233\lambda_{233}'', as well as on the soft supersymmetry breaking trilinear couplings. Our analysis shows that the infrared fixed point behavior of NMSSM with baryon and lepton number violation is similar to that of MSSM.Comment: 35 pages, Revtex, 6 eps fig
    corecore